Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0d57ca46
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0d57ca46
编写于
2月 10, 2018
作者:
Y
Yang Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
nccl pass parallel_do test
上级
0815c0f1
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
99 addition
and
34 deletion
+99
-34
paddle/operators/nccl_op.cc
paddle/operators/nccl_op.cc
+20
-1
paddle/operators/nccl_op.cu.cc
paddle/operators/nccl_op.cu.cc
+8
-0
paddle/operators/parallel_do_op.cc
paddle/operators/parallel_do_op.cc
+22
-2
python/paddle/v2/fluid/backward.py
python/paddle/v2/fluid/backward.py
+25
-16
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+4
-2
python/paddle/v2/fluid/tests/test_parallel_op.py
python/paddle/v2/fluid/tests/test_parallel_op.py
+20
-13
未找到文件。
paddle/operators/nccl_op.cc
浏览文件 @
0d57ca46
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include <paddle/framework/framework.pb.h>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
#include "paddle/operators/nccl/nccl_gpu_common.h"
...
@@ -49,6 +50,22 @@ class NCCLInitOp : public framework::OperatorBase {
...
@@ -49,6 +50,22 @@ class NCCLInitOp : public framework::OperatorBase {
}
}
};
};
class
NCCLInitOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Communicator"
).
front
();
auto
&
out_var
=
block
->
FindRecursiveOrCreateVar
(
out_var_name
);
auto
var_type
=
framework
::
proto
::
VarDesc
::
NCCL_COM
;
out_var
.
SetType
(
var_type
);
}
};
class
NCCLInitOpShapeInference
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
};
class
NCCLInitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
NCCLInitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
NCCLInitOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
NCCLInitOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
@@ -214,7 +231,9 @@ Bcast the tensors.
...
@@ -214,7 +231,9 @@ Bcast the tensors.
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
ncclInit
,
ops
::
NCCLInitOp
,
REGISTER_OPERATOR
(
ncclInit
,
ops
::
NCCLInitOp
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
NCCLInitOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
NCCLInitOpMaker
,
ops
::
NCCLInitOpVarTypeInference
,
ops
::
NCCLInitOpShapeInference
);
REGISTER_OP_WITHOUT_GRADIENT
(
ncclAllReduce
,
ops
::
NCCLAllReduceOp
,
REGISTER_OP_WITHOUT_GRADIENT
(
ncclAllReduce
,
ops
::
NCCLAllReduceOp
,
ops
::
NCCLAllReduceOpMaker
);
ops
::
NCCLAllReduceOpMaker
);
...
...
paddle/operators/nccl_op.cu.cc
浏览文件 @
0d57ca46
...
@@ -47,8 +47,11 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
...
@@ -47,8 +47,11 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
auto
ins
=
ctx
.
MultiInput
<
LoDTensor
>
(
"X"
);
auto
ins
=
ctx
.
MultiInput
<
LoDTensor
>
(
"X"
);
auto
outs
=
ctx
.
MultiOutput
<
LoDTensor
>
(
"Out"
);
auto
outs
=
ctx
.
MultiOutput
<
LoDTensor
>
(
"Out"
);
LOG
(
INFO
)
<<
"------------------"
;
std
::
string
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
std
::
string
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
LOG
(
INFO
)
<<
"------------------"
;
ncclRedOp_t
reduction_op_
=
ncclSum
;
ncclRedOp_t
reduction_op_
=
ncclSum
;
LOG
(
INFO
)
<<
"------------------"
;
if
(
reduction
==
"ncclMin"
)
{
if
(
reduction
==
"ncclMin"
)
{
reduction_op_
=
ncclMin
;
reduction_op_
=
ncclMin
;
...
@@ -62,14 +65,19 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
...
@@ -62,14 +65,19 @@ class NCCLAllReduceKernel : public framework::OpKernel<T> {
PADDLE_THROW
(
"Invalid reduction. default ncclSum."
);
PADDLE_THROW
(
"Invalid reduction. default ncclSum."
);
}
}
LOG
(
INFO
)
<<
"------------------"
;
auto
*
comm
=
ctx
.
Input
<
Communicator
>
(
"Communicator"
);
auto
*
comm
=
ctx
.
Input
<
Communicator
>
(
"Communicator"
);
LOG
(
INFO
)
<<
"------------------"
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
LOG
(
INFO
)
<<
"------------------"
;
// device id
// device id
int
gpu_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
()).
GetDeviceId
();
int
gpu_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
()).
GetDeviceId
();
LOG
(
INFO
)
<<
"------------------"
;
int
idx
=
comm
->
GetCommId
(
gpu_id
);
int
idx
=
comm
->
GetCommId
(
gpu_id
);
LOG
(
INFO
)
<<
"------------------"
;
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
++
i
)
{
VLOG
(
1
)
<<
"gpu : "
VLOG
(
1
)
<<
"gpu : "
<<
" invoke allreduce. send "
<<
ins
[
i
]
->
numel
()
<<
" recv "
<<
" invoke allreduce. send "
<<
ins
[
i
]
->
numel
()
<<
" recv "
...
...
paddle/operators/parallel_do_op.cc
浏览文件 @
0d57ca46
...
@@ -30,6 +30,7 @@ static constexpr char kOutputs[] = "outputs";
...
@@ -30,6 +30,7 @@ static constexpr char kOutputs[] = "outputs";
static
constexpr
char
kParallelScopes
[]
=
"parallel_scopes"
;
static
constexpr
char
kParallelScopes
[]
=
"parallel_scopes"
;
static
constexpr
char
kParallelBlock
[]
=
"sub_block"
;
static
constexpr
char
kParallelBlock
[]
=
"sub_block"
;
static
constexpr
char
kUseNCCL
[]
=
"use_nccl"
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
SelectedRows
=
framework
::
SelectedRows
;
...
@@ -159,6 +160,7 @@ class ParallelDoOp : public framework::OperatorBase {
...
@@ -159,6 +160,7 @@ class ParallelDoOp : public framework::OperatorBase {
}
}
WaitOnPlaces
(
places
);
WaitOnPlaces
(
places
);
// PADDLE_ENFORCE_EQ(places.size(), sub_scopes.size());
std
::
vector
<
std
::
future
<
void
>>
workers
;
std
::
vector
<
std
::
future
<
void
>>
workers
;
workers
.
reserve
(
places
.
size
());
workers
.
reserve
(
places
.
size
());
for
(
size_t
place_idx
=
0
;
place_idx
<
sub_scopes
.
size
();
++
place_idx
)
{
for
(
size_t
place_idx
=
0
;
place_idx
<
sub_scopes
.
size
();
++
place_idx
)
{
...
@@ -202,6 +204,8 @@ class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -202,6 +204,8 @@ class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
kOutputs
,
""
).
AsDuplicable
();
AddOutput
(
kOutputs
,
""
).
AsDuplicable
();
AddOutput
(
kParallelScopes
,
""
);
AddOutput
(
kParallelScopes
,
""
);
AddAttr
<
framework
::
BlockDesc
*>
(
kParallelBlock
,
""
);
AddAttr
<
framework
::
BlockDesc
*>
(
kParallelBlock
,
""
);
AddAttr
<
bool
>
(
kUseNCCL
,
"true if we use nccl on backward"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
ParallelDo Operator.
ParallelDo Operator.
)DOC"
);
)DOC"
);
...
@@ -223,20 +227,22 @@ class ParallelDoGradOp : public framework::OperatorBase {
...
@@ -223,20 +227,22 @@ class ParallelDoGradOp : public framework::OperatorBase {
auto
&
sub_scopes
=
scope
.
FindVar
(
Input
(
kParallelScopes
))
auto
&
sub_scopes
=
scope
.
FindVar
(
Input
(
kParallelScopes
))
->
Get
<
std
::
vector
<
framework
::
Scope
*>>
();
->
Get
<
std
::
vector
<
framework
::
Scope
*>>
();
auto
&
places
=
scope
.
FindVar
(
Input
(
kPlaces
))
->
Get
<
platform
::
PlaceList
>
();
auto
&
places
=
scope
.
FindVar
(
Input
(
kPlaces
))
->
Get
<
platform
::
PlaceList
>
();
// PADDLE_ENFORCE_EQ(places.size(), sub_scopes.size());
// feed output@grad
// feed output@grad
SplitTensorAndMoveTensorToScopes
(
SplitTensorAndMoveTensorToScopes
(
scope
,
const_cast
<
std
::
vector
<
framework
::
Scope
*>
*>
(
&
sub_scopes
),
scope
,
const_cast
<
std
::
vector
<
framework
::
Scope
*>
*>
(
&
sub_scopes
),
places
,
Inputs
(
framework
::
GradVarName
(
kOutputs
)));
places
,
Inputs
(
framework
::
GradVarName
(
kOutputs
)));
WaitOnPlaces
(
places
);
WaitOnPlaces
(
places
);
LOG
(
INFO
)
<<
"places "
<<
places
.
size
();
// exe run
// exe run
std
::
vector
<
std
::
future
<
void
>>
workers
;
std
::
vector
<
std
::
future
<
void
>>
workers
;
for
(
size_t
i
=
0
;
i
<
sub_scopes
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
sub_scopes
.
size
();
++
i
)
{
auto
&
place
=
places
[
i
];
auto
&
place
=
places
[
i
];
auto
*
cur_scope
=
sub_scopes
[
i
];
auto
*
cur_scope
=
sub_scopes
[
i
];
LOG
(
INFO
)
<<
place
;
// execute
// execute
workers
.
emplace_back
(
framework
::
Async
([
program
,
cur_scope
,
place
,
block
]
{
workers
.
emplace_back
(
framework
::
Async
([
program
,
cur_scope
,
place
,
block
]
{
...
@@ -245,12 +251,26 @@ class ParallelDoGradOp : public framework::OperatorBase {
...
@@ -245,12 +251,26 @@ class ParallelDoGradOp : public framework::OperatorBase {
false
/*create_local_scope*/
);
false
/*create_local_scope*/
);
}));
}));
}
}
LOG
(
INFO
)
<<
"places "
<<
places
.
size
();
for
(
auto
&
worker
:
workers
)
{
for
(
auto
&
worker
:
workers
)
{
worker
.
wait
();
worker
.
wait
();
}
}
WaitOnPlaces
(
places
);
WaitOnPlaces
(
places
);
// NCCL allreduce op will be added by backward,
// so no need to explicitly accumulate grad
if
(
!
(
Attr
<
bool
>
(
kUseNCCL
)))
{
AccumulateGrad
(
scope
,
place
,
sub_scopes
,
places
);
AccumulateGrad
(
scope
,
place
,
sub_scopes
,
places
);
}
else
{
for
(
auto
&
place
:
places
)
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"NCCL only supports cuda place"
);
}
}
for
(
auto
&
s
:
Outputs
(
framework
::
GradVarName
(
kParameters
)))
{
CopyOrShare
(
*
sub_scopes
[
0
]
->
FindVar
(
s
),
place
,
scope
.
FindVar
(
s
));
}
WaitOnPlaces
(
places
);
}
}
void
AccumulateGrad
(
const
framework
::
Scope
&
scope
,
void
AccumulateGrad
(
const
framework
::
Scope
&
scope
,
...
...
python/paddle/v2/fluid/backward.py
浏览文件 @
0d57ca46
...
@@ -218,7 +218,7 @@ def _callback_lookup_(op):
...
@@ -218,7 +218,7 @@ def _callback_lookup_(op):
:param op:
:param op:
:return: callback function
:return: callback function
"""
"""
if
op
.
type
==
'parallel_do'
:
if
op
.
type
==
'parallel_do'
and
op
.
attr
(
'use_nccl'
)
:
param_names
=
set
(
op
.
input
(
'parameters'
))
param_names
=
set
(
op
.
input
(
'parameters'
))
param_grad_names
=
[
n
+
"@GRAD"
for
n
in
param_names
]
param_grad_names
=
[
n
+
"@GRAD"
for
n
in
param_names
]
...
@@ -229,18 +229,25 @@ def _callback_lookup_(op):
...
@@ -229,18 +229,25 @@ def _callback_lookup_(op):
def
__call__
(
self
,
block
,
context
):
def
__call__
(
self
,
block
,
context
):
if
not
self
.
has_inserted_nccl_init
:
if
not
self
.
has_inserted_nccl_init
:
global_block
=
block
.
program
.
global_block
()
# global_block = block.program.global_block()
op_desc
=
global_block
.
desc
.
append_op
()
# op_desc = global_block.desc.append_op()
var_desc
=
global_block
.
desc
.
var
(
'nccl_com'
)
# var_desc = global_block.desc.var('nccl_com__do_not_change_')
var_desc
.
set_type
(
core
.
VarDesc
.
VarType
.
NCCL_COM
)
# var_desc.set_type(core.VarDesc.VarType.NCCL_COM)
self
.
nccl_com
=
global_block
.
create_var
(
# self.nccl_com = global_block.create_var(
name
=
'nccl_com'
,
type
=
core
.
VarDesc
.
VarType
.
NCCL_COM
)
# name='nccl_com', type=core.VarDesc.VarType.NCCL_COM)
framework
.
Operator
(
# framework.Operator(
global_block
,
# global_block,
type
=
'ncclInit'
,
# type='ncclInit',
desc
=
op_desc
,
# desc=op_desc,
inputs
=
{},
# inputs={},
outputs
=
{
'Communicator'
:
[
self
.
nccl_com
]})
# outputs={'Communicator': [self.nccl_com]})
op_desc
=
_create_op_desc_
(
"ncclInit"
,
{},
{
"Communicator"
:
[
'nccl_com__do_not_change_'
]},
{})
# block.desc.append_op().copy_from(op_desc)
print
(
serialize_op_decs
(
op_desc
))
block
.
program
.
global_block
().
desc
.
append_op
().
copy_from
(
op_desc
)
self
.
has_inserted_nccl_init
=
True
self
.
has_inserted_nccl_init
=
True
current_op_desc
=
context
[
"__current_op_desc__"
]
current_op_desc
=
context
[
"__current_op_desc__"
]
...
@@ -263,7 +270,8 @@ def _callback_lookup_(op):
...
@@ -263,7 +270,8 @@ def _callback_lookup_(op):
op_desc
=
_create_op_desc_
(
op_desc
=
_create_op_desc_
(
"ncclAllReduce"
,
{
"ncclAllReduce"
,
{
"X"
:
[
o_argu
],
"X"
:
[
o_argu
],
"Communicator"
:
[
'nccl_com_0'
]
"Communicator"
:
[
'nccl_com__do_not_change_'
]
},
{
"Out"
:
[
allreduce_out_name
]},
},
{
"Out"
:
[
allreduce_out_name
]},
{
"reduction"
:
"ncclSum"
})
{
"reduction"
:
"ncclSum"
})
block
.
desc
.
append_op
().
copy_from
(
op_desc
)
block
.
desc
.
append_op
().
copy_from
(
op_desc
)
...
@@ -375,10 +383,11 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
...
@@ -375,10 +383,11 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
continue
continue
grad_info_map
[
grad_to_var
[
grad_var_name
]]
=
(
grad_var_name
,
block
)
grad_info_map
[
grad_to_var
[
grad_var_name
]]
=
(
grad_var_name
,
block
)
# infer_shape and infer_type
# infer_shape and infer_type
if
op_desc
.
type
()
==
'ncclInit'
:
continue
op_desc
.
infer_var_type
(
block
.
desc
)
op_desc
.
infer_var_type
(
block
.
desc
)
op_desc
.
infer_shape
(
block
.
desc
)
op_desc
.
infer_shape
(
block
.
desc
)
# ncclInit dones't need to set data_type
if
op_desc
.
type
()
==
'ncclInit'
:
continue
for
arg
in
op_desc
.
output_arg_names
():
for
arg
in
op_desc
.
output_arg_names
():
if
arg
in
new_vars
:
if
arg
in
new_vars
:
_infer_var_data_type_
(
arg
,
block
)
_infer_var_data_type_
(
arg
,
block
)
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
0d57ca46
...
@@ -237,12 +237,13 @@ class ParallelDo(object):
...
@@ -237,12 +237,13 @@ class ParallelDo(object):
ParallelDo class is used to create a ParallelDo.
ParallelDo class is used to create a ParallelDo.
"""
"""
def
__init__
(
self
,
places
,
name
=
None
):
def
__init__
(
self
,
places
,
use_nccl
=
False
,
name
=
None
):
self
.
helper
=
LayerHelper
(
"parallel_do"
,
name
=
name
)
self
.
helper
=
LayerHelper
(
"parallel_do"
,
name
=
name
)
self
.
inputs
=
[]
self
.
inputs
=
[]
self
.
places
=
places
self
.
places
=
places
self
.
outputs
=
[]
self
.
outputs
=
[]
self
.
status
=
StaticRNN
.
BEFORE_RNN_BLOCK
self
.
status
=
StaticRNN
.
BEFORE_RNN_BLOCK
self
.
use_nccl
=
use_nccl
def
do
(
self
):
def
do
(
self
):
return
BlockGuardWithCompletion
(
self
)
return
BlockGuardWithCompletion
(
self
)
...
@@ -325,7 +326,8 @@ class ParallelDo(object):
...
@@ -325,7 +326,8 @@ class ParallelDo(object):
},
},
outputs
=
{
'outputs'
:
outputs
,
outputs
=
{
'outputs'
:
outputs
,
'parallel_scopes'
:
[
step_scope
]},
'parallel_scopes'
:
[
step_scope
]},
attrs
=
{
'sub_block'
:
current_block
})
attrs
=
{
'sub_block'
:
current_block
,
'use_nccl'
:
self
.
use_nccl
})
class
BlockGuardWithCompletion
(
BlockGuard
):
class
BlockGuardWithCompletion
(
BlockGuard
):
...
...
python/paddle/v2/fluid/tests/test_parallel_op.py
浏览文件 @
0d57ca46
...
@@ -67,12 +67,25 @@ class BaseParallelForTest(unittest.TestCase):
...
@@ -67,12 +67,25 @@ class BaseParallelForTest(unittest.TestCase):
fetch
=
fetch
,
fetch
=
fetch
,
place
=
gpu
,
place
=
gpu
,
use_parallel
=
True
)
use_parallel
=
True
)
result_gpu_nccl
=
self
.
_run_test_impl_
(
callback
=
callback
,
feed
=
feed
,
fetch
=
fetch
,
place
=
gpu
,
use_parallel
=
True
,
use_nccl
=
True
)
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
,
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
,
result_gpu
,
result_gpu_parallel
)
result_gpu
,
result_gpu_parallel
,
result_gpu_nccl
)
else
:
else
:
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
)
self
.
_assert_same_
(
fetch
,
result_cpu
,
result_cpu_parallel
)
def
_run_test_impl_
(
self
,
callback
,
feed
,
fetch
,
place
,
use_parallel
=
False
):
def
_run_test_impl_
(
self
,
callback
,
feed
,
fetch
,
place
,
use_parallel
=
False
,
use_nccl
=
False
):
"""
"""
Run a single test, returns the fetch values
Run a single test, returns the fetch values
Args:
Args:
...
@@ -96,7 +109,7 @@ class BaseParallelForTest(unittest.TestCase):
...
@@ -96,7 +109,7 @@ class BaseParallelForTest(unittest.TestCase):
# Automatically insert parallel do if use_parallel = True
# Automatically insert parallel do if use_parallel = True
if
use_parallel
:
if
use_parallel
:
places
=
fluid
.
layers
.
get_places
()
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
pd
=
fluid
.
layers
.
ParallelDo
(
places
,
use_nccl
=
use_nccl
)
data
=
next
(
generator
)
data
=
next
(
generator
)
if
isinstance
(
data
,
fluid
.
Variable
):
if
isinstance
(
data
,
fluid
.
Variable
):
...
@@ -137,7 +150,9 @@ class BaseParallelForTest(unittest.TestCase):
...
@@ -137,7 +150,9 @@ class BaseParallelForTest(unittest.TestCase):
"""
"""
def
_impl_
(
a
,
b
,
fetch_id
,
item_id
):
def
_impl_
(
a
,
b
,
fetch_id
,
item_id
):
item_str
=
[
'CPU'
,
'ParallelCPU'
,
'GPU'
,
'ParallelGPU'
]
item_str
=
[
'CPU'
,
'ParallelCPU'
,
'GPU'
,
'ParallelGPU'
,
'ParallelGPUNCCL'
]
flag
=
numpy
.
allclose
(
a
,
b
,
rtol
=
0.1
)
flag
=
numpy
.
allclose
(
a
,
b
,
rtol
=
0.1
)
self
.
assertTrue
(
flag
,
"The {0} are different in {1}"
.
format
(
self
.
assertTrue
(
flag
,
"The {0} are different in {1}"
.
format
(
fetch
[
fetch_id
],
item_str
[
item_id
]))
fetch
[
fetch_id
],
item_str
[
item_id
]))
...
@@ -157,18 +172,10 @@ class ParallelOpTest(BaseParallelForTest):
...
@@ -157,18 +172,10 @@ class ParallelOpTest(BaseParallelForTest):
loss
=
fluid
.
layers
.
mean
(
x
=
hidden
)
loss
=
fluid
.
layers
.
mean
(
x
=
hidden
)
yield
loss
yield
loss
def
test_simple_fc
(
self
):
self
.
run_test
(
callback
=
self
.
__network__
,
feed
=
{
'img'
:
numpy
.
random
.
random
(
size
=
(
51
,
784
)).
astype
(
'float32'
)
},
fetch
=
[
'fc1.w@GRAD'
])
def
test_fc_with_tiny_data
(
self
):
def
test_fc_with_tiny_data
(
self
):
self
.
run_test
(
self
.
run_test
(
callback
=
self
.
__network__
,
callback
=
self
.
__network__
,
feed
=
{
'img'
:
numpy
.
random
.
random
(
size
=
(
1
,
784
)).
astype
(
'float32'
)},
feed
=
{
'img'
:
numpy
.
random
.
random
(
size
=
(
8
,
784
)).
astype
(
'float32'
)},
fetch
=
[
'fc1.w@GRAD'
])
fetch
=
[
'fc1.w@GRAD'
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录