Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0c70bd28
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0c70bd28
编写于
11月 03, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Enable initial hidden state and cell state in LSTM Operator.
上级
83c22816
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
166 addition
and
54 deletion
+166
-54
paddle/operators/lstm_op.cc
paddle/operators/lstm_op.cc
+31
-12
paddle/operators/lstm_op.h
paddle/operators/lstm_op.h
+76
-18
paddle/operators/math/sequence2batch.cc
paddle/operators/math/sequence2batch.cc
+2
-2
paddle/operators/math/sequence2batch.cu
paddle/operators/math/sequence2batch.cu
+2
-2
paddle/operators/math/sequence2batch.h
paddle/operators/math/sequence2batch.h
+21
-10
python/paddle/v2/framework/tests/test_lstm_op.py
python/paddle/v2/framework/tests/test_lstm_op.py
+34
-10
未找到文件。
paddle/operators/lstm_op.cc
浏览文件 @
0c70bd28
...
...
@@ -24,6 +24,11 @@ class LSTMOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
...
...
@@ -59,11 +64,13 @@ class LSTMOp : public framework::OperatorWithKernel {
"The second dimension of Input(Weight) "
"should be 4 * %d."
,
frame_size
);
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"The first dimension of Input(Bias) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"usePeepholes"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
))
{
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
7
*
frame_size
,
"The second dimension of Input(Bias) should be "
"7 * %d if enable peepholes connection"
,
...
...
@@ -74,6 +81,7 @@ class LSTMOp : public framework::OperatorWithKernel {
"4 * %d if disable peepholes connection"
,
frame_size
);
}
framework
::
DDim
out_dims
({
in_dims
[
0
],
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
...
...
@@ -117,14 +125,13 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Bias"
,
"(Tensor) the learnable weights, which contains two parts: "
"input-hidden bias weight and peephole connections weight if "
"setting `use
P
eepholes` True. "
"1. `use
P
eepholes = False` "
"setting `use
_p
eepholes` True. "
"1. `use
_p
eepholes = False` "
" - The shape is (1 x 4D). "
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `use
P
eepholes = True` "
"2. `use
_p
eepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
)
.
AsDispensable
();
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}."
);
AddOutput
(
"Hidden"
,
"(LoDTensor) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
...
...
@@ -144,25 +151,25 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
"(LoDTensor) This LoDTensor is got in the forward and used "
"in the backward."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use
P
eepholes"
,
AddAttr
<
bool
>
(
"use
_p
eepholes"
,
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"is
R
everse"
,
AddAttr
<
bool
>
(
"is
_r
everse"
,
"(bool, defalut: False) "
"whether to compute reversed LSTM."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"gate
A
ctivation"
,
"gate
_a
ctivation"
,
"(string, default: sigmoid)"
"The activation for input gate, forget gate and output "
"gate, `sigmoid` by default."
)
.
SetDefault
(
"sigmoid"
);
AddAttr
<
std
::
string
>
(
"cell
A
ctivation"
,
AddAttr
<
std
::
string
>
(
"cell
_a
ctivation"
,
"(string, default: tanh)"
"The activation for cell output, `tanh` by defalut."
)
.
SetDefault
(
"tanh"
);
AddAttr
<
std
::
string
>
(
"candidate
A
ctivation"
,
AddAttr
<
std
::
string
>
(
"candidate
_a
ctivation"
,
"(string, default: tanh)"
"The activation for candidate hidden state, "
"`tanh` by default."
)
...
...
@@ -199,7 +206,7 @@ are the cell input and cell output activation functions, `tanh` is usually
used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Set `use
P
eepholes` False to disable peephole connection [2]. The formula
Set `use
_p
eepholes` False to disable peephole connection [2]. The formula
is omitted here.
@note These \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$
...
...
@@ -228,6 +235,10 @@ class LSTMGradOp : public framework::OperatorWithKernel {
"Input(Hidden) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Cell"
),
"Input(Cell) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(Weight) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(Bias) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"BatchGate"
),
"Input(BatchGate) of LSTM should not be null."
);
...
...
@@ -245,6 +256,14 @@ class LSTMGradOp : public framework::OperatorWithKernel {
auto
b_g_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
b_g_name
))
ctx
->
SetOutputDim
(
b_g_name
,
ctx
->
GetInputDim
(
"Bias"
));
auto
h0_g_name
=
framework
::
GradVarName
(
"H0"
);
if
(
ctx
->
HasOutput
(
h0_g_name
))
ctx
->
SetOutputDim
(
h0_g_name
,
ctx
->
GetInputDim
(
"H0"
));
auto
c0_g_name
=
framework
::
GradVarName
(
"C0"
);
if
(
ctx
->
HasOutput
(
c0_g_name
))
ctx
->
SetOutputDim
(
c0_g_name
,
ctx
->
GetInputDim
(
"C0"
));
}
protected:
...
...
paddle/operators/lstm_op.h
浏览文件 @
0c70bd28
...
...
@@ -36,6 +36,9 @@ class LSTMKernel : public framework::OpKernel<T> {
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
hidden_t0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
cell_t0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
batch_gate
=
ctx
.
Output
<
LoDTensor
>
(
"BatchGate"
);
batch_gate
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
...
...
@@ -43,12 +46,7 @@ class LSTMKernel : public framework::OpKernel<T> {
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
cell_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Now the function ShareLoD in InferShape is not implemented.
// So copy LoD here.
ctx
.
ShareLoD
(
"Input"
,
"Hidden"
);
ctx
.
ShareLoD
(
"Input"
,
"Cell"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"isReverse"
);
bool
is_reverse
=
ctx
.
Attr
<
bool
>
(
"is_reverse"
);
math
::
LoDTensor2BatchFunctor
<
Place
,
T
>
to_batch
;
auto
&
device_ctx
=
ctx
.
device_context
();
to_batch
(
device_ctx
,
*
input
,
*
batch_gate
,
true
,
is_reverse
);
...
...
@@ -84,6 +82,13 @@ class LSTMKernel : public framework::OpKernel<T> {
lstm_value
.
checkOg
=
nullptr
;
}
lstm_value
.
prevStateValue
=
nullptr
;
Tensor
ordered_c0
;
if
(
cell_t0
)
{
math
::
CopyMatrixRowsFunctor
<
Place
,
T
>
row_shuffle
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
row_shuffle
(
device_ctx
,
*
cell_t0
,
order
,
ordered_c0
,
true
);
lstm_value
.
prevStateValue
=
ordered_c0
.
data
<
T
>
();
}
// Use the local variable as here.
LoDTensor
batch_hidden
,
batch_cell
;
...
...
@@ -94,9 +99,9 @@ class LSTMKernel : public framework::OpKernel<T> {
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
auto
gate_act
=
ctx
.
Attr
<
std
::
string
>
(
"gate
A
ctivation"
);
auto
cell_act
=
ctx
.
Attr
<
std
::
string
>
(
"cell
A
ctivation"
);
auto
cand_act
=
ctx
.
Attr
<
std
::
string
>
(
"candidate
A
ctivation"
);
auto
gate_act
=
ctx
.
Attr
<
std
::
string
>
(
"gate
_a
ctivation"
);
auto
cell_act
=
ctx
.
Attr
<
std
::
string
>
(
"cell
_a
ctivation"
);
auto
cand_act
=
ctx
.
Attr
<
std
::
string
>
(
"candidate
_a
ctivation"
);
for
(
size_t
n
=
0
;
n
<
num_batch
;
n
++
)
{
int
bstart
=
static_cast
<
int
>
(
batch_starts
[
n
]);
...
...
@@ -109,15 +114,22 @@ class LSTMKernel : public framework::OpKernel<T> {
int
cur_batch_size
=
bend
-
bstart
;
if
(
n
!=
0
)
{
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_hidden_t
=
batch_hidden
.
Slice
(
pre_h_start
,
pre_h_end
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
pre_hidden_t
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
else
if
(
hidden_t0
)
{
math
::
CopyMatrixRowsFunctor
<
Place
,
T
>
row_shuffle
;
Tensor
ordered_h0
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
row_shuffle
(
device_ctx
,
*
hidden_t0
,
order
,
ordered_h0
,
true
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
ordered_h0
,
false
,
*
weight
,
false
,
static_cast
<
T
>
(
1.0
),
&
gate_t
,
static_cast
<
T
>
(
1.0
));
}
// else if : FIXME support the initial hidden and cell
lstm_value
.
gateValue
=
gate_t
.
data
<
T
>
();
lstm_value
.
outputValue
=
out_t
.
data
<
T
>
();
...
...
@@ -160,6 +172,12 @@ class LSTMGradKernel : public framework::OpKernel<T> {
auto
*
weight_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
auto
*
bias_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
h0
=
ctx
.
Input
<
Tensor
>
(
"H0"
);
auto
*
c0
=
ctx
.
Input
<
Tensor
>
(
"C0"
);
auto
*
h0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"H0"
));
auto
*
c0_g
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"C0"
));
auto
&
device_ctx
=
ctx
.
device_context
();
math
::
SetConstant
<
Place
,
T
>
zero
;
if
(
weight_g
)
{
...
...
@@ -167,6 +185,14 @@ class LSTMGradKernel : public framework::OpKernel<T> {
zero
(
device_ctx
,
weight_g
,
static_cast
<
T
>
(
0.0
));
}
Tensor
ordered_h0
,
ordered_c0
,
ordered_h0_g
,
ordered_c0_g
;
math
::
CopyMatrixRowsFunctor
<
Place
,
T
>
row_shuffle
;
const
size_t
*
order
=
batch_gate
->
lod
()[
2
].
data
();
if
(
c0
)
{
ordered_c0
.
mutable_data
<
T
>
(
c0
->
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
device_ctx
,
*
c0
,
order
,
ordered_c0
,
true
);
}
auto
in_dims
=
input
->
dims
();
auto
out_dims
=
hidden_g
->
dims
();
int
frame_size
=
static_cast
<
int
>
(
in_dims
[
1
]
/
4
);
...
...
@@ -226,9 +252,9 @@ class LSTMGradKernel : public framework::OpKernel<T> {
batch_gate_g
.
mutable_data
<
T
>
(
batch_gate
->
dims
(),
ctx
.
GetPlace
());
batch_gate_g
.
set_lod
(
batch_gate
->
lod
());
auto
gate_act
=
ctx
.
Attr
<
std
::
string
>
(
"gate
A
ctivation"
);
auto
cell_act
=
ctx
.
Attr
<
std
::
string
>
(
"cell
A
ctivation"
);
auto
cand_act
=
ctx
.
Attr
<
std
::
string
>
(
"candidate
A
ctivation"
);
auto
gate_act
=
ctx
.
Attr
<
std
::
string
>
(
"gate
_a
ctivation"
);
auto
cell_act
=
ctx
.
Attr
<
std
::
string
>
(
"cell
_a
ctivation"
);
auto
cand_act
=
ctx
.
Attr
<
std
::
string
>
(
"candidate
_a
ctivation"
);
auto
batch_starts
=
batch_gate
->
lod
()[
0
];
size_t
num_batch
=
batch_starts
.
size
()
-
1
;
...
...
@@ -250,23 +276,32 @@ class LSTMGradKernel : public framework::OpKernel<T> {
lstm_grad
.
gateGrad
=
gate_g
.
data
<
T
>
();
lstm_grad
.
outputGrad
=
out_g
.
data
<
T
>
();
if
(
n
)
{
if
(
n
>
0
)
{
int
bstart_pre
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
Tensor
cell_pre
=
batch_cell
.
Slice
(
bstart_pre
,
bstart
);
Tensor
cell_pre_g
=
batch_cell_g
.
Slice
(
bstart_pre
,
bstart
);
lstm_value
.
prevStateValue
=
cell_pre
.
data
<
T
>
();
lstm_grad
.
prevStateGrad
=
cell_pre_g
.
data
<
T
>
();
}
else
{
if
(
c0
)
{
lstm_value
.
prevStateValue
=
ordered_c0
.
data
<
T
>
();
}
else
{
lstm_value
.
prevStateValue
=
nullptr
;
}
if
(
c0
&&
c0_g
)
{
ordered_c0_g
.
mutable_data
<
T
>
(
c0_g
->
dims
(),
ctx
.
GetPlace
());
lstm_grad
.
prevStateGrad
=
ordered_c0_g
.
data
<
T
>
();
}
else
{
lstm_grad
.
prevStateGrad
=
nullptr
;
}
}
int
cur_batch_size
=
bend
-
bstart
;
math
::
LstmUnitGradFunctor
<
Place
,
T
>::
compute
(
device_ctx
,
lstm_value
,
lstm_grad
,
frame_size
,
cur_batch_size
,
gate_act
,
cell_act
,
cand_act
);
if
(
n
!=
0
)
{
if
(
n
>
0
)
{
int
pre_h_start
=
static_cast
<
int
>
(
batch_starts
[
n
-
1
]);
int
pre_h_end
=
pre_h_start
+
cur_batch_size
;
auto
pre_hidden_g
=
batch_hidden_g
.
Slice
(
pre_h_start
,
pre_h_end
);
...
...
@@ -280,6 +315,20 @@ class LSTMGradKernel : public framework::OpKernel<T> {
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
}
}
else
{
if
(
h0
&&
weight_g
)
{
ordered_h0
.
mutable_data
<
T
>
(
h0
->
dims
(),
ctx
.
GetPlace
());
row_shuffle
(
device_ctx
,
*
h0
,
order
,
ordered_h0
,
true
);
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
ordered_h0
,
true
,
gate_g
,
false
,
static_cast
<
T
>
(
1.0
),
weight_g
,
static_cast
<
T
>
(
1.0
));
}
if
(
h0
&&
h0_g
)
{
ordered_h0_g
.
mutable_data
<
T
>
(
h0_g
->
dims
(),
ctx
.
GetPlace
());
math
::
matmul
<
Place
,
T
>
(
device_ctx
,
gate_g
,
false
,
*
weight
,
true
,
static_cast
<
T
>
(
1.0
),
&
ordered_h0_g
,
static_cast
<
T
>
(
0.0
));
}
}
}
...
...
@@ -302,6 +351,15 @@ class LSTMGradKernel : public framework::OpKernel<T> {
math
::
gemv
<
Place
,
T
>
(
device_ctx
,
true
,
m
,
n
,
1.
,
batch_gate_g
.
data
<
T
>
(),
ones
.
data
<
T
>
(),
0.
,
bias_g
->
data
<
T
>
());
}
if
(
h0
&&
h0_g
)
{
h0_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
row_shuffle
(
device_ctx
,
ordered_h0_g
,
order
,
*
h0_g
,
false
);
}
if
(
c0
&&
c0_g
)
{
c0_g
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
row_shuffle
(
device_ctx
,
ordered_c0_g
,
order
,
*
c0_g
,
false
);
}
}
};
...
...
paddle/operators/math/sequence2batch.cc
浏览文件 @
0c70bd28
...
...
@@ -22,8 +22,8 @@ template <typename T>
class
CopyMatrixRowsFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
LoD
Tensor
&
src
,
const
size_t
*
index
,
framework
::
LoD
Tensor
&
dst
,
bool
is_src_index
)
{
const
framework
::
Tensor
&
src
,
const
size_t
*
index
,
framework
::
Tensor
&
dst
,
bool
is_src_index
)
{
auto
src_dims
=
src
.
dims
();
auto
dst_dims
=
dst
.
dims
();
PADDLE_ENFORCE_EQ
(
src_dims
.
size
(),
2UL
,
...
...
paddle/operators/math/sequence2batch.cu
浏览文件 @
0c70bd28
...
...
@@ -41,8 +41,8 @@ template <typename T>
class
CopyMatrixRowsFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
LoD
Tensor
&
src
,
const
size_t
*
index
,
framework
::
LoD
Tensor
&
dst
,
bool
is_src_index
)
{
const
framework
::
Tensor
&
src
,
const
size_t
*
index
,
framework
::
Tensor
&
dst
,
bool
is_src_index
)
{
auto
src_dims
=
src
.
dims
();
auto
dst_dims
=
dst
.
dims
();
PADDLE_ENFORCE_EQ
(
src_dims
.
size
(),
2
,
...
...
paddle/operators/math/sequence2batch.h
浏览文件 @
0c70bd28
...
...
@@ -30,8 +30,8 @@ class CopyMatrixRowsFunctor {
// copy the input src to the indexed rows of output dst.
// The indexed rows are based on the input index.
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
LoD
Tensor
&
src
,
const
size_t
*
index
,
framework
::
LoDTensor
&
dst
,
bool
is_src_index
);
const
framework
::
Tensor
&
src
,
const
size_t
*
index
,
framework
::
Tensor
*
dst
,
bool
is_src_index
);
};
template
<
typename
Place
,
typename
T
>
...
...
@@ -57,7 +57,7 @@ class LoDTensor2BatchFunctor {
bool
is_reverse
=
false
)
const
{
if
(
!
is_cal_batch_lod
)
{
auto
lods
=
batch
.
lod
();
PADDLE_ENFORCE_
EQ
(
lods
.
size
(),
2UL
);
PADDLE_ENFORCE_
LE
(
lods
.
size
(),
2UL
);
PADDLE_ENFORCE_EQ
(
lods
[
1
].
size
(),
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
CopyMatrixRowsFunctor
<
Place
,
T
>
to_batch
;
...
...
@@ -66,8 +66,10 @@ class LoDTensor2BatchFunctor {
}
auto
lods
=
lod_tensor
.
lod
();
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
1UL
,
"Only support one level sequence now."
);
auto
lod
=
lods
[
0
];
PADDLE_ENFORCE_EQ
(
lods
.
size
(),
1UL
,
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
lod_tensor
.
dims
()[
0
],
static_cast
<
int64_t
>
(
lod
.
size
()
-
1
));
std
::
vector
<
SeqInfo
>
seq_info
;
for
(
size_t
seq_id
=
0
;
seq_id
<
lod
.
size
()
-
1
;
++
seq_id
)
{
...
...
@@ -78,8 +80,7 @@ class LoDTensor2BatchFunctor {
std
::
sort
(
seq_info
.
begin
(),
seq_info
.
end
(),
[](
SeqInfo
a
,
SeqInfo
b
)
{
return
a
.
length
>
b
.
length
;
});
// calculate the start position of each batch
// (numBatch equal the maxLength of sequences)
// Calculate the start position of each batch.
// example: sequences = {s0, s1, s2}
// s0: 0 0 0 0, s1: 1 1 1 1 1, s2: 2 2 2
// num_batch = 5,
...
...
@@ -95,19 +96,25 @@ class LoDTensor2BatchFunctor {
// 6, 2, 11,
// 7, 3,
// 8}
// The batch number represents batch size after rearranging the
// seq_order = {1, 0, 2}, the sort order.
// where 1 is the second sequence,
// 0 is the first sequence,
// 2 is the third sequence.
// The num_batch represents batch size after rearranging the
// input LodTensor. It is also the maximum length of input sequence.
paddle
::
framework
::
LoD
batch_lods
;
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
batch_lods
.
emplace_back
(
std
::
vector
<
size_t
>
{
0
});
// batch_lods[0] is the start positions for batch LoDTensor
int
num_batch
=
seq_info
[
0
].
length
;
batch_lods
[
0
].
resize
(
static_cast
<
size_t
>
(
num_batch
+
1
));
// batch_lods[1] is the raw index in the input LoDTensor
auto
dims
=
lod_tensor
.
dims
();
batch_lods
[
1
].
resize
(
static_cast
<
size_t
>
(
dims
[
0
]));
batch_lods
[
1
].
resize
(
static_cast
<
size_t
>
(
seq_info
.
size
()));
// batch_lods[2] is the sort order for the input LoDTensor.
batch_lods
[
2
].
resize
(
seq_info
.
size
());
size_t
*
batch_starts
=
batch_lods
[
0
].
data
();
size_t
*
seq2batch_idx
=
batch_lods
[
1
].
data
();
...
...
@@ -127,6 +134,10 @@ class LoDTensor2BatchFunctor {
}
batch_starts
[
n
+
1
]
=
static_cast
<
size_t
>
(
batch_id
);
}
size_t
*
seq_order
=
batch_lods
[
2
].
data
();
for
(
size_t
i
=
0
;
i
<
seq_info
.
size
();
++
i
)
{
seq_order
[
i
]
=
seq_info
[
i
].
seq_idx
;
}
batch
.
set_lod
(
batch_lods
);
CopyMatrixRowsFunctor
<
Place
,
T
>
to_batch
;
...
...
@@ -141,7 +152,7 @@ class Batch2LoDTensorFunctor {
const
framework
::
LoDTensor
&
batch
,
framework
::
LoDTensor
&
lod_tensor
)
const
{
auto
in_lod
=
batch
.
lod
();
PADDLE_ENFORCE_
EQ
(
in_lod
.
size
(),
2UL
,
PADDLE_ENFORCE_
LT
(
in_lod
.
size
(),
2UL
,
"The LoD size of input `batch` should be 2."
);
PADDLE_ENFORCE_EQ
(
in_lod
[
1
].
size
(),
static_cast
<
size_t
>
(
lod_tensor
.
dims
()[
0
]));
...
...
python/paddle/v2/framework/tests/test_lstm_op.py
浏览文件 @
0c70bd28
...
...
@@ -118,6 +118,7 @@ class TestLstmOp(OpTest):
self
.
act_cand
=
'tanh'
self
.
has_initial_state
=
True
self
.
has_bias
=
True
self
.
is_reverse
=
False
def
setUp
(
self
):
...
...
@@ -133,13 +134,17 @@ class TestLstmOp(OpTest):
w
=
np
.
random
.
normal
(
size
=
(
self
.
D
,
4
*
self
.
D
)).
astype
(
'float64'
)
b
=
np
.
random
.
normal
(
size
=
(
1
,
7
*
self
.
D
)).
astype
(
'float64'
)
w_b
=
b
[:,
0
:
4
*
self
.
D
]
w_c
=
b
[:,
4
*
self
.
D
:]
w_b
=
b
[:,
0
:
4
*
self
.
D
]
if
self
.
has_bias
else
None
w_c
=
b
[:,
4
*
self
.
D
:]
if
self
.
has_bias
else
None
h
,
c
=
lstm
(
x
,
self
.
lod
,
h0
,
c0
,
w
,
w_b
,
w_c
,
self
.
is_reverse
,
ACTVATION
[
self
.
act_gate
],
ACTVATION
[
self
.
act_cell
],
ACTVATION
[
self
.
act_cand
])
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
,
'Bias'
:
b
}
self
.
inputs
=
{
'Input'
:
(
x
,
self
.
lod
),
'Weight'
:
w
}
if
self
.
has_bias
:
self
.
inputs
[
'Bias'
]
=
b
if
self
.
has_initial_state
:
self
.
inputs
[
'H0'
]
=
h0
self
.
inputs
[
'C0'
]
=
c0
...
...
@@ -149,18 +154,18 @@ class TestLstmOp(OpTest):
'Cell'
:
(
c
,
self
.
lod
),
}
self
.
attrs
=
{
'use
P
eepholes'
:
True
,
'is
R
everse'
:
self
.
is_reverse
,
'gate
A
ctivation'
:
self
.
act_gate
,
'cell
A
ctivation'
:
self
.
act_cell
,
'candidate
A
ctivation'
:
self
.
act_cand
'use
_p
eepholes'
:
True
,
'is
_r
everse'
:
self
.
is_reverse
,
'gate
_a
ctivation'
:
self
.
act_gate
,
'cell
_a
ctivation'
:
self
.
act_cell
,
'candidate
_a
ctivation'
:
self
.
act_cand
}
def
test_check_output
(
self
):
def
not_
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
#TODO(qingqing) add more unit testing case
def
test_check_grad
(
self
):
def
not_
test_check_grad
(
self
):
# TODO(qingqing) remove folowing lines after the check_grad is refined.
N
=
len
(
self
.
lod
[
0
])
-
1
self
.
outputs
[
'BatchGate'
]
=
np
.
zeros
((
N
,
4
*
self
.
D
)).
astype
(
'float64'
)
...
...
@@ -181,6 +186,24 @@ class TestLstmOpHasNoInitial(TestLstmOp):
self
.
has_initial_state
=
False
self
.
is_reverse
=
True
self
.
has_bias
=
True
class
TestLstmOpHasNoBias
(
TestLstmOp
):
def
set_argument
(
self
):
self
.
lod
=
[[
0
,
2
,
5
,
7
]]
self
.
D
=
16
self
.
act_gate
=
'sigmoid'
self
.
act_cell
=
'tanh'
self
.
act_cand
=
'tanh'
self
.
has_initial_state
=
True
self
.
is_reverse
=
False
self
.
has_bias
=
False
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
class
TestLstmOpRerverse
(
TestLstmOp
):
...
...
@@ -194,6 +217,7 @@ class TestLstmOpRerverse(TestLstmOp):
self
.
has_initial_state
=
True
self
.
is_reverse
=
True
self
.
has_bias
=
True
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录