未验证 提交 0c2b74f9 编写于 作者: G George Ni 提交者: GitHub

[MOT] Fix mot video decode (#3681)

* mot video decode to images

* add infer_dir for mot

* fix export and unite pose infer

* remove task in mot source

* set image_dir

* update doc
上级 320c6eea
metric: MOT metric: MOT
num_classes: 1 num_classes: 1
MOTDataZoo: {
'MOT15_train': ['ADL-Rundle-6', 'ADL-Rundle-8', 'ETH-Bahnhof', 'ETH-Pedcross2', 'ETH-Sunnyday', 'KITTI-13', 'KITTI-17', 'PETS09-S2L1', 'TUD-Campus', 'TUD-Stadtmitte', 'Venice-2'],
'MOT15_test': ['ADL-Rundle-1', 'ADL-Rundle-3', 'AVG-TownCentre', 'ETH-Crossing', 'ETH-Jelmoli', 'ETH-Linthescher', 'KITTI-16', 'KITTI-19', 'PETS09-S2L2', 'TUD-Crossing', 'Venice-1'],
'MOT16_train': ['MOT16-02', 'MOT16-04', 'MOT16-05', 'MOT16-09', 'MOT16-10', 'MOT16-11', 'MOT16-13'],
'MOT16_test': ['MOT16-01', 'MOT16-03', 'MOT16-06', 'MOT16-07', 'MOT16-08', 'MOT16-12', 'MOT16-14'],
'MOT17_train': ['MOT17-02-SDP', 'MOT17-04-SDP', 'MOT17-05-SDP', 'MOT17-09-SDP', 'MOT17-10-SDP', 'MOT17-11-SDP', 'MOT17-13-SDP'],
'MOT17_test': ['MOT17-01-SDP', 'MOT17-03-SDP', 'MOT17-06-SDP', 'MOT17-07-SDP', 'MOT17-08-SDP', 'MOT17-12-SDP', 'MOT17-14-SDP'],
'MOT20_train': ['MOT20-01', 'MOT20-02', 'MOT20-03', 'MOT20-05'],
'MOT20_test': ['MOT20-04', 'MOT20-06', 'MOT20-07', 'MOT20-08'],
'demo': ['MOT16-02'],
}
# for MOT training # for MOT training
TrainDataset: TrainDataset:
!MOTDataSet !MOTDataSet
...@@ -21,16 +9,15 @@ TrainDataset: ...@@ -21,16 +9,15 @@ TrainDataset:
data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide'] data_fields: ['image', 'gt_bbox', 'gt_class', 'gt_ide']
# for MOT evaluation # for MOT evaluation
# If you want to change the MOT evaluation dataset, please modify 'task' and 'data_root' # If you want to change the MOT evaluation dataset, please modify 'data_root'
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT16_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT16/images/train data_root: MOT16/images/train
keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT keep_ori_im: False # set True if save visualization images or video, or used in DeepSORT
# for MOT video inference # for MOT video inference
TestMOTDataset: TestMOTDataset:
!MOTVideoDataset !MOTImageFolder
dataset_dir: dataset/mot dataset_dir: dataset/mot
keep_ori_im: True # set True if save visualization images or video keep_ori_im: True # set True if save visualization images or video
...@@ -224,11 +224,10 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d ...@@ -224,11 +224,10 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams
``` ```
**Notes:** **Notes:**
The default evaluation dataset is MOT-16 Train Set. If you want to change the evaluation dataset, please refer to the following code and modify `configs/datasets/mot.yml` The default evaluation dataset is MOT-16 Train Set. If you want to change the evaluation dataset, please refer to the following code and modify `configs/datasets/mot.yml`, modify `data_root`
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
...@@ -242,6 +241,14 @@ Inference a vidoe on single GPU with following command: ...@@ -242,6 +241,14 @@ Inference a vidoe on single GPU with following command:
# inference on video and save a video # inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
``` ```
Inference a image folder on single GPU with following command:
```bash
# inference image folder and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --image_dir={your infer images folder} --save_videos
```
**Notes:** **Notes:**
Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`. Please make sure that [ffmpeg](https://ffmpeg.org/ffmpeg.html) is installed first, on Linux(Ubuntu) platform you can directly install it by the following command:`apt-get update && apt-get install -y ffmpeg`.
......
...@@ -222,11 +222,10 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d ...@@ -222,11 +222,10 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=output/fairmot_dla34_30e_1088x608/model_final.pdparams
``` ```
**注意:** **注意:**
默认评估的是MOT-16 Train Set数据集, 如需换评估数据集可参照以下代码修改`configs/datasets/mot.yml` 默认评估的是MOT-16 Train Set数据集,如需换评估数据集可参照以下代码修改`configs/datasets/mot.yml`,修改`data_root`
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
...@@ -241,6 +240,13 @@ EvalMOTDataset: ...@@ -241,6 +240,13 @@ EvalMOTDataset:
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --video_file={your video name}.mp4 --save_videos
``` ```
使用单个GPU通过如下命令预测一个图片文件夹,并保存为视频
```bash
# 预测一个图片文件夹
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams --image_dir={your infer images folder} --save_videos
```
**注意:** **注意:**
请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg` 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
......
...@@ -11,6 +11,7 @@ TestMOTReader: ...@@ -11,6 +11,7 @@ TestMOTReader:
inputs_def: inputs_def:
image_shape: [3, 608, 1088] image_shape: [3, 608, 1088]
sample_transforms: sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]} - LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {} - Permute: {}
......
...@@ -7,7 +7,6 @@ _BASE_: [ ...@@ -7,7 +7,6 @@ _BASE_: [
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT16_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT16/images/train data_root: MOT16/images/train
keep_ori_im: True # set as True in DeepSORT keep_ori_im: True # set as True in DeepSORT
......
...@@ -7,7 +7,6 @@ _BASE_: [ ...@@ -7,7 +7,6 @@ _BASE_: [
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT16_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT16/images/train data_root: MOT16/images/train
keep_ori_im: True # set as True in DeepSORT keep_ori_im: True # set as True in DeepSORT
......
...@@ -59,7 +59,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d ...@@ -59,7 +59,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
......
...@@ -57,7 +57,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d ...@@ -57,7 +57,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
......
...@@ -22,8 +22,6 @@ TrainReader: ...@@ -22,8 +22,6 @@ TrainReader:
EvalMOTReader: EvalMOTReader:
inputs_def:
image_shape: [3, 608, 1088]
sample_transforms: sample_transforms:
- Decode: {} - Decode: {}
- LetterBoxResize: {target_size: [608, 1088]} - LetterBoxResize: {target_size: [608, 1088]}
...@@ -36,6 +34,7 @@ TestMOTReader: ...@@ -36,6 +34,7 @@ TestMOTReader:
inputs_def: inputs_def:
image_shape: [3, 608, 1088] image_shape: [3, 608, 1088]
sample_transforms: sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]} - LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1]} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1]}
- Permute: {} - Permute: {}
......
...@@ -65,7 +65,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53 ...@@ -65,7 +65,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
......
...@@ -66,7 +66,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53 ...@@ -66,7 +66,6 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53
``` ```
EvalMOTDataset: EvalMOTDataset:
!MOTImageFolder !MOTImageFolder
task: MOT17_train
dataset_dir: dataset/mot dataset_dir: dataset/mot
data_root: MOT17/images/train data_root: MOT17/images/train
keep_ori_im: False # set True if save visualization images or video keep_ori_im: False # set True if save visualization images or video
......
...@@ -41,6 +41,7 @@ TestMOTReader: ...@@ -41,6 +41,7 @@ TestMOTReader:
inputs_def: inputs_def:
image_shape: [3, 608, 1088] image_shape: [3, 608, 1088]
sample_transforms: sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [608, 1088]} - LetterBoxResize: {target_size: [608, 1088]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {} - Permute: {}
......
...@@ -41,6 +41,7 @@ TestMOTReader: ...@@ -41,6 +41,7 @@ TestMOTReader:
inputs_def: inputs_def:
image_shape: [3, 320, 576] image_shape: [3, 320, 576]
sample_transforms: sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [320, 576]} - LetterBoxResize: {target_size: [320, 576]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {} - Permute: {}
......
...@@ -41,6 +41,7 @@ TestMOTReader: ...@@ -41,6 +41,7 @@ TestMOTReader:
inputs_def: inputs_def:
image_shape: [3, 480, 864] image_shape: [3, 480, 864]
sample_transforms: sample_transforms:
- Decode: {}
- LetterBoxResize: {target_size: [480, 864]} - LetterBoxResize: {target_size: [480, 864]}
- NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True} - NormalizeImage: {mean: [0, 0, 0], std: [1, 1, 1], is_scale: True}
- Permute: {} - Permute: {}
......
...@@ -84,7 +84,10 @@ class JDE_Detector(Detector): ...@@ -84,7 +84,10 @@ class JDE_Detector(Detector):
conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0. conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7 tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean' metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
self.tracker = JDETracker(conf_thres=conf_thres, tracked_thresh=tracked_thresh, metric_type=metric_type) self.tracker = JDETracker(
conf_thres=conf_thres,
tracked_thresh=tracked_thresh,
metric_type=metric_type)
def postprocess(self, pred_dets, pred_embs, threshold): def postprocess(self, pred_dets, pred_embs, threshold):
online_targets = self.tracker.update(pred_dets, pred_embs) online_targets = self.tracker.update(pred_dets, pred_embs)
......
...@@ -178,7 +178,9 @@ def mot_keypoint_unite_predict_video(mot_model, ...@@ -178,7 +178,9 @@ def mot_keypoint_unite_predict_video(mot_model,
keypoint_results, keypoint_results,
visual_thread=FLAGS.keypoint_threshold, visual_thread=FLAGS.keypoint_threshold,
returnimg=True, returnimg=True,
ids=online_ids) ids=online_ids
if KEYPOINT_SUPPORT_MODELS[keypoint_arch] == 'keypoint_topdown' else
None)
online_im = mot_vis.plot_tracking( online_im = mot_vis.plot_tracking(
im, im,
......
...@@ -13,8 +13,10 @@ ...@@ -13,8 +13,10 @@
# limitations under the License. # limitations under the License.
import os import os
import sys
import cv2
import glob
import numpy as np import numpy as np
import decord as de
from collections import OrderedDict from collections import OrderedDict
try: try:
from collections.abc import Sequence from collections.abc import Sequence
...@@ -228,8 +230,18 @@ def mot_label(): ...@@ -228,8 +230,18 @@ def mot_label():
@register @register
@serializable @serializable
class MOTImageFolder(DetDataset): class MOTImageFolder(DetDataset):
"""
Load MOT dataset with MOT format from image folder or video .
Args:
video_file (str): path of the video file, default ''.
dataset_dir (str): root directory for dataset.
keep_ori_im (bool): whether to keep original image, default False.
Set True when used during MOT model inference while saving
images or video, or used in DeepSORT.
"""
def __init__(self, def __init__(self,
task, video_file=None,
dataset_dir=None, dataset_dir=None,
data_root=None, data_root=None,
image_dir=None, image_dir=None,
...@@ -238,20 +250,53 @@ class MOTImageFolder(DetDataset): ...@@ -238,20 +250,53 @@ class MOTImageFolder(DetDataset):
**kwargs): **kwargs):
super(MOTImageFolder, self).__init__( super(MOTImageFolder, self).__init__(
dataset_dir, image_dir, sample_num=sample_num) dataset_dir, image_dir, sample_num=sample_num)
self.task = task self.video_file = video_file
self.data_root = data_root self.data_root = data_root
self.keep_ori_im = keep_ori_im self.keep_ori_im = keep_ori_im
self._imid2path = {} self._imid2path = {}
self.roidbs = None self.roidbs = None
self.frame_rate = 30
def check_or_download_dataset(self): def check_or_download_dataset(self):
return return
def parse_dataset(self, ): def parse_dataset(self, ):
if not self.roidbs: if not self.roidbs:
if self.video_file is None:
self.roidbs = self._load_images() self.roidbs = self._load_images()
else:
self.roidbs = self._load_video_images()
def _load_video_images(self):
cap = cv2.VideoCapture(self.video_file)
self.frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
def _parse(self): extension = self.video_file.split('.')[-1]
output_path = self.video_file.replace('.{}'.format(extension), '')
frames_path = video2frames(self.video_file, output_path)
self.video_frames = sorted(
glob.glob(os.path.join(frames_path, '*.png')))
self.video_length = len(self.video_frames)
logger.info('Length of the video: {:d} frames.'.format(
self.video_length))
ct = 0
records = []
for image in self.video_frames:
assert image != '' and os.path.isfile(image), \
"Image {} not found".format(image)
if self.sample_num > 0 and ct >= self.sample_num:
break
rec = {'im_id': np.array([ct]), 'im_file': image}
if self.keep_ori_im:
rec.update({'keep_ori_im': 1})
self._imid2path[ct] = image
ct += 1
records.append(rec)
assert len(records) > 0, "No image file found"
return records
def _find_images(self):
image_dir = self.image_dir image_dir = self.image_dir
if not isinstance(image_dir, Sequence): if not isinstance(image_dir, Sequence):
image_dir = [image_dir] image_dir = [image_dir]
...@@ -265,7 +310,7 @@ class MOTImageFolder(DetDataset): ...@@ -265,7 +310,7 @@ class MOTImageFolder(DetDataset):
return images return images
def _load_images(self): def _load_images(self):
images = self._parse() images = self._find_images()
ct = 0 ct = 0
records = [] records = []
for image in images: for image in images:
...@@ -289,67 +334,44 @@ class MOTImageFolder(DetDataset): ...@@ -289,67 +334,44 @@ class MOTImageFolder(DetDataset):
self.image_dir = images self.image_dir = images
self.roidbs = self._load_images() self.roidbs = self._load_images()
def set_video(self, video_file):
self.video_file = video_file
assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \
"wrong or unsupported file format: {}".format(self.video_file)
self.roidbs = self._load_video_images()
def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')): def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', 'flv')):
return f.lower().endswith(extensions) return f.lower().endswith(extensions)
@register def video2frames(video_path, outpath, **kargs):
@serializable def _dict2str(kargs):
class MOTVideoDataset(DetDataset): cmd_str = ''
""" for k, v in kargs.items():
Load MOT dataset with MOT format from video for inference. cmd_str += (' ' + str(k) + ' ' + str(v))
Args: return cmd_str
video_file (str): path of the video file
dataset_dir (str): root directory for dataset.
keep_ori_im (bool): whether to keep original image, default False.
Set True when used during MOT model inference while saving
images or video, or used in DeepSORT.
"""
def __init__(self, ffmpeg = ['ffmpeg ', ' -y -loglevel ', ' error ']
video_file='', vid_name = os.path.basename(video_path).split('.')[0]
dataset_dir=None, out_full_path = os.path.join(outpath, vid_name)
keep_ori_im=False,
**kwargs):
super(MOTVideoDataset, self).__init__(dataset_dir=dataset_dir)
self.video_file = video_file
self.dataset_dir = dataset_dir
self.keep_ori_im = keep_ori_im
self.roidbs = None
self.frame_rate = 25
def parse_dataset(self, ): if not os.path.exists(out_full_path):
if not self.roidbs: os.makedirs(out_full_path)
self.roidbs = self._load_video_images()
def _load_video_images(self): # video file name
self.video_frames = de.VideoReader(self.video_file) outformat = os.path.join(out_full_path, '%08d.png')
self.video_length = len(self.video_frames)
logger.info('Length of the video: {:d} frames.'.format(
self.video_length))
records = []
for idx in range(self.video_length):
image = self.video_frames.get_batch([idx]).asnumpy()[0]
im_shape = image.shape
rec = {
'im_id': np.array([idx]),
'image': image,
'h': im_shape[0],
'w': im_shape[1],
'im_shape': np.array(
im_shape[:2], dtype=np.float32),
'scale_factor': np.array(
[1., 1.], dtype=np.float32),
}
if self.keep_ori_im:
rec.update({'ori_image': image})
records.append(rec)
assert len(records) > 0, "No image file found."
return records
def set_video(self, video_file): cmd = ffmpeg
self.video_file = video_file cmd = ffmpeg + [' -i ', video_path, ' -start_number ', ' 0 ', outformat]
assert os.path.isfile(self.video_file) and _is_valid_video(self.video_file), \ cmd = ''.join(cmd) + _dict2str(kargs)
"wrong or unsupported file format: {}".format(self.video_file)
self.roidbs = self._load_video_images() try:
os.system(cmd)
except:
raise RuntimeError('ffmpeg process video: {} error'.format(vid_name))
sys.stdout.flush()
sys.exit(-1)
sys.stdout.flush()
return out_full_path
...@@ -58,9 +58,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape): ...@@ -58,9 +58,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
label_list = [str(cat) for cat in catid2name.values()] label_list = [str(cat) for cat in catid2name.values()]
sample_transforms = reader_cfg['sample_transforms'] sample_transforms = reader_cfg['sample_transforms']
if arch != 'mot_arch': for st in sample_transforms[1:]:
sample_transforms = sample_transforms[1:]
for st in sample_transforms:
for key, value in st.items(): for key, value in st.items():
p = {'type': key} p = {'type': key}
if key == 'Resize': if key == 'Resize':
...@@ -82,12 +80,14 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape): ...@@ -82,12 +80,14 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
return preprocess_list, label_list return preprocess_list, label_list
def _parse_tracker(tracker_cfg): def _parse_tracker(tracker_cfg):
tracker_params = {} tracker_params = {}
for k, v in tracker_cfg.items(): for k, v in tracker_cfg.items():
tracker_params.update({k: v}) tracker_params.update({k: v})
return tracker_params return tracker_params
def _dump_infer_config(config, path, image_shape, model): def _dump_infer_config(config, path, image_shape, model):
arch_state = False arch_state = False
from ppdet.core.config.yaml_helpers import setup_orderdict from ppdet.core.config.yaml_helpers import setup_orderdict
......
...@@ -282,18 +282,25 @@ class Tracker(object): ...@@ -282,18 +282,25 @@ class Tracker(object):
n_frame = 0 n_frame = 0
timer_avgs, timer_calls = [], [] timer_avgs, timer_calls = [], []
for seq in seqs: for seq in seqs:
if not os.path.isdir(os.path.join(data_root, seq)):
continue
infer_dir = os.path.join(data_root, seq, 'img1')
seqinfo = os.path.join(data_root, seq, 'seqinfo.ini')
if not os.path.exists(seqinfo) or not os.path.exists(
infer_dir) or not os.path.isdir(infer_dir):
continue
save_dir = os.path.join(output_dir, 'mot_outputs', save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None seq) if save_images or save_videos else None
logger.info('start seq: {}'.format(seq)) logger.info('start seq: {}'.format(seq))
infer_dir = os.path.join(data_root, seq, 'img1')
images = self.get_infer_images(infer_dir) images = self.get_infer_images(infer_dir)
self.dataset.set_images(images) self.dataset.set_images(images)
dataloader = create('EvalMOTReader')(self.dataset, 0) dataloader = create('EvalMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq)) result_filename = os.path.join(result_root, '{}.txt'.format(seq))
meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read() meta_info = open(seqinfo).read()
frame_rate = int(meta_info[meta_info.find('frameRate') + 10: frame_rate = int(meta_info[meta_info.find('frameRate') + 10:
meta_info.find('\nseqLength')]) meta_info.find('\nseqLength')])
with paddle.no_grad(): with paddle.no_grad():
...@@ -365,6 +372,7 @@ class Tracker(object): ...@@ -365,6 +372,7 @@ class Tracker(object):
def mot_predict(self, def mot_predict(self,
video_file, video_file,
image_dir,
output_dir, output_dir,
data_type='mot', data_type='mot',
model_type='JDE', model_type='JDE',
...@@ -373,6 +381,13 @@ class Tracker(object): ...@@ -373,6 +381,13 @@ class Tracker(object):
show_image=False, show_image=False,
det_results_dir='', det_results_dir='',
draw_threshold=0.5): draw_threshold=0.5):
assert video_file is not None or image_dir is not None, \
"--video_file or --image_dir should be set."
assert video_file is None or os.path.isfile(video_file), \
"{} is not a file".format(video_file)
assert image_dir is None or os.path.isdir(image_dir), \
"{} is not a directory".format(image_dir)
if not os.path.exists(output_dir): os.makedirs(output_dir) if not os.path.exists(output_dir): os.makedirs(output_dir)
result_root = os.path.join(output_dir, 'mot_results') result_root = os.path.join(output_dir, 'mot_results')
if not os.path.exists(result_root): os.makedirs(result_root) if not os.path.exists(result_root): os.makedirs(result_root)
...@@ -382,12 +397,25 @@ class Tracker(object): ...@@ -382,12 +397,25 @@ class Tracker(object):
"model_type should be 'JDE', 'DeepSORT' or 'FairMOT'" "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'"
# run tracking # run tracking
if video_file:
seq = video_file.split('/')[-1].split('.')[0] seq = video_file.split('/')[-1].split('.')[0]
self.dataset.set_video(video_file)
logger.info('Starting tracking video {}'.format(video_file))
elif image_dir:
seq = image_dir.split('/')[-1].split('.')[0]
images = [
'{}/{}'.format(image_dir, x) for x in os.listdir(image_dir)
]
images.sort()
self.dataset.set_images(images)
logger.info('Starting tracking folder {}, found {} images'.format(
image_dir, len(images)))
else:
raise ValueError('--video_file or --image_dir should be set.')
save_dir = os.path.join(output_dir, 'mot_outputs', save_dir = os.path.join(output_dir, 'mot_outputs',
seq) if save_images or save_videos else None seq) if save_images or save_videos else None
logger.info('Starting tracking {}'.format(video_file))
self.dataset.set_video(video_file)
dataloader = create('TestMOTReader')(self.dataset, 0) dataloader = create('TestMOTReader')(self.dataset, 0)
result_filename = os.path.join(result_root, '{}.txt'.format(seq)) result_filename = os.path.join(result_root, '{}.txt'.format(seq))
frame_rate = self.dataset.frame_rate frame_rate = self.dataset.frame_rate
......
...@@ -73,11 +73,11 @@ def parse_args(): ...@@ -73,11 +73,11 @@ def parse_args():
def run(FLAGS, cfg): def run(FLAGS, cfg):
task = cfg['EvalMOTDataset'].task
dataset_dir = cfg['EvalMOTDataset'].dataset_dir dataset_dir = cfg['EvalMOTDataset'].dataset_dir
data_root = cfg['EvalMOTDataset'].data_root data_root = cfg['EvalMOTDataset'].data_root
data_root = '{}/{}'.format(dataset_dir, data_root) data_root = '{}/{}'.format(dataset_dir, data_root)
seqs = cfg['MOTDataZoo'][task] seqs = os.listdir(data_root)
seqs.sort()
# build Tracker # build Tracker
tracker = Tracker(cfg, mode='eval') tracker = Tracker(cfg, mode='eval')
......
...@@ -43,6 +43,11 @@ def parse_args(): ...@@ -43,6 +43,11 @@ def parse_args():
parser = ArgsParser() parser = ArgsParser()
parser.add_argument( parser.add_argument(
'--video_file', type=str, default=None, help='Video name for tracking.') '--video_file', type=str, default=None, help='Video name for tracking.')
parser.add_argument(
"--image_dir",
type=str,
default=None,
help="Directory for images to perform inference on.")
parser.add_argument( parser.add_argument(
"--data_type", "--data_type",
type=str, type=str,
...@@ -95,6 +100,7 @@ def run(FLAGS, cfg): ...@@ -95,6 +100,7 @@ def run(FLAGS, cfg):
# inference # inference
tracker.mot_predict( tracker.mot_predict(
video_file=FLAGS.video_file, video_file=FLAGS.video_file,
image_dir=FLAGS.image_dir,
data_type=FLAGS.data_type, data_type=FLAGS.data_type,
model_type=cfg.architecture, model_type=cfg.architecture,
output_dir=FLAGS.output_dir, output_dir=FLAGS.output_dir,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册