提交 09b78c72 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into ssd_target_assign

...@@ -47,3 +47,5 @@ sphinx_add_target(paddle_docs_cn ...@@ -47,3 +47,5 @@ sphinx_add_target(paddle_docs_cn
${SPHINX_CACHE_DIR_CN} ${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN}) ${SPHINX_HTML_DIR_CN})
add_subdirectory(api)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_api_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})
## Auto Gradient Checker Design ## Auto Gradient Check Design
## Backgraound: ## Background:
- Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right: - Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right because of the following challenges:
1. you should get the right backpropagation formula according to the forward computation. 1. The formula for backpropagation formula should be correct according to the forward computation.
2. you should implement it right in CPP. 2. The Implementation of the above shoule be correct in CPP.
3. it's difficult to prepare test data. 3. It is difficult to prepare an unbiased test data.
- Auto gradient checking gets a numerical gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages: - Auto gradient checking gets a numerical gradient using forward Operator and uses it as a reference for the backward Operator's result. It has several advantages:
1. numerical gradient checker only need forward operator. 1. Numerical gradient checker only needs the forward operator.
2. user only need to prepare the input data for forward Operator. 2. The user only needs to prepare the input data for forward Operator and not worry about the backward Operator.
## Mathematical Theory ## Mathematical Theory
The following two document from Stanford has a detailed explanation of how to get numerical gradient and why it's useful. The following documents from Stanford have a detailed explanation of how to compute the numerical gradient and why it is useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation ## Numerical Gradient Implementation
### Python Interface ### Python Interface
```python ```python
def get_numerical_gradient(op, def get_numerical_gradient(op,
...@@ -27,73 +27,76 @@ def get_numerical_gradient(op, ...@@ -27,73 +27,76 @@ def get_numerical_gradient(op,
delta=0.005, delta=0.005,
local_scope=None): local_scope=None):
""" """
Get Numeric Gradient for an operator's input. Get Numerical Gradient for the input of an operator.
:param op: C++ operator instance, could be an network :param op: C++ operator instance, could be an network.
:param input_values: The input variables. Should be an dictionary, whose key is :param input_values: The input variables. Should be an dictionary, whose key is
variable name, and value is numpy array. variable name, and value is a numpy array.
:param output_name: The final output variable name. :param output_name: The final output variable name.
:param input_to_check: The input variable with respect to which to compute the gradient. :param input_to_check: The input variable with respect to which the gradient has to be computed.
:param delta: The perturbation value for numeric gradient method. The :param delta: The perturbation value for numerical gradient method. The
smaller delta is, the more accurate result will get. But if that delta is smaller the delta, the more accurate the result. But if the delta is too
too small, it will suffer from numerical stability problem. small, it will suffer from the numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient. :param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format. :return: The gradient array in numpy format.
""" """
``` ```
### Explaination: ### Explanation:
- Why need `output_name` - Why do we need an `output_name`
- An Operator may have multiple Output, one can get independent gradient from each Output. So caller should specify the name of the output variable. - An Operator may have multiple Outputs, one can compute an independent gradient from each Output. So the caller should specify the name of the output variable.
- Why need `input_to_check` - Why do we need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times. - One operator can have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numerical Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times each with a different input.
### Core Algorithm Implementation ### Core Algorithm Implementation
```python ```python
# we only compute gradient of one element a time. # we only compute the gradient of one element a time.
# we use a for loop to compute the gradient of each element. # we use a for loop to compute the gradient of each element.
for i in xrange(tensor_size): for i in xrange(tensor_size):
# get one input element by its index i. # get one input element using the index i.
origin = tensor_to_check.get_float_element(i) original = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the new value of the result tensor. # add delta to it, run the forward op and then
x_pos = origin + delta # get the new value of the result tensor.
x_pos = original + delta
tensor_to_check.set_float_element(i, x_pos) tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output() y_pos = get_output()
# plus delta to this element, run op and get the new value of the result tensor. # Subtract delta from this element, run the op again
x_neg = origin - delta # and get the new value of the result tensor.
x_neg = original - delta
tensor_to_check.set_float_element(i, x_neg) tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output() y_neg = get_output()
# restore old value # restore old value
tensor_to_check.set_float_element(i, origin) tensor_to_check.set_float_element(i, original)
# compute the gradient of this element and store it into a numpy array. # compute the gradient of this element and store
# it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2 gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor. # reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims()) return gradient_flat.reshape(tensor_to_check.get_dims())
``` ```
## Auto Graident Checker Framework ## Auto Gradient Check Framework
Each Operator Kernel has three kinds of Gradient: Each Operator Kernel has three kinds of Gradient:
1. Numerical gradient 1. Numerical gradient
2. CPU kernel gradient 2. CPU kernel gradient
3. GPU kernel gradient (if supported) 3. GPU kernel gradient (if supported by the device)
The numerical gradient only relies on forward Operator. So we use the numerical gradient as the reference value. And the gradient checking is performed in the following three steps: The numerical gradient only relies on the forward Operator, so we use the numerical gradient as the reference value. The gradient checking is performed in the following three steps:
1. calculate the numerical gradient 1. Calculate the numerical gradient
2. calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient 2. Calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient.
3. calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient (if supported) 3. Calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient. (if supported)
#### Python Interface #### Python Interface
...@@ -110,25 +113,26 @@ The numerical gradient only relies on forward Operator. So we use the numerical ...@@ -110,25 +113,26 @@ The numerical gradient only relies on forward Operator. So we use the numerical
:param forward_op: used to create backward_op :param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following :param input_vars: numpy value of input variable. The following
computation will use these variables. computation will use these variables.
:param inputs_to_check: the input variable with respect to which to compute the gradient. :param inputs_to_check: the input variable with respect to which the
gradient will be computed.
:param output_name: The final output variable name. :param output_name: The final output variable name.
:param max_relative_error: The relative tolerance parameter. :param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops :param no_grad_set: used to create backward ops
:param only_cpu: only compute and check gradient on cpu kernel. :param only_cpu: only compute and check gradient on cpu kernel.
:return: :return:
""" """
``` ```
### How to check if two numpy array is close enough? ### How to check if two numpy arrays are close enough?
if `abs_numerical_grad` is nearly zero, then use abs error for numerical_grad if `abs_numerical_grad` is nearly zero, then use absolute error for numerical_grad.
```python ```python
numerical_grad = ... numerical_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numerical_grad = numpy.abs(numerical_grad) abs_numerical_grad = numpy.abs(numerical_grad)
# if abs_numerical_grad is nearly zero, then use abs error for numeric_grad, not relative # if abs_numerical_grad is nearly zero, then use abs error for
# error. # numeric_grad, instead of relative error.
abs_numerical_grad[abs_numerical_grad < 1e-3] = 1 abs_numerical_grad[abs_numerical_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad
...@@ -140,7 +144,7 @@ max_diff = numpy.max(diff_mat) ...@@ -140,7 +144,7 @@ max_diff = numpy.max(diff_mat)
The Input data for auto gradient checker should be reasonable to avoid numerical stability problem. The Input data for auto gradient checker should be reasonable to avoid numerical stability problem.
#### Refs: #### References:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization) - [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96) - [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
...@@ -42,7 +42,7 @@ The type *channel* is conceptually the blocking queue. In Go, its implemented i ...@@ -42,7 +42,7 @@ The type *channel* is conceptually the blocking queue. In Go, its implemented i
The `select` operation has been in OS kernels long before Go language. All Unix kernels implement system calls *poll* and *select*. They monitor multiple file descriptors to see if I/O is possible on any of them. This takes O(N) time. Since Linux 2.6, a new system call, *epoll*, can do the same in O(1) time. In BSD systems, there is a similar system call *kqueue*. Go's Linux implementation uses epoll. The `select` operation has been in OS kernels long before Go language. All Unix kernels implement system calls *poll* and *select*. They monitor multiple file descriptors to see if I/O is possible on any of them. This takes O(N) time. Since Linux 2.6, a new system call, *epoll*, can do the same in O(1) time. In BSD systems, there is a similar system call *kqueue*. Go's Linux implementation uses epoll.
It might be a good idea to implement Fluid's select using epoll too. In this design doc, we start from the O(N) way, so we could focus on Python binding and the syntax. It might be a good idea to implement Fluid's select using epoll too. In this design doc, we start from the O(N) way so that we could focus on Python binding and the syntax.
### Type Channel ### Type Channel
...@@ -71,14 +71,14 @@ ch1 := make(chan int, 100) // a channel that can buffer 100 ints. ...@@ -71,14 +71,14 @@ ch1 := make(chan int, 100) // a channel that can buffer 100 ints.
In Fluid, we should be able to do the same: In Fluid, we should be able to do the same:
```python ```python
ch = fluid.make_chan(dtype=INT) ch = fluid.make_channel(dtype=INT)
ch1 = fluid.make_chan(dtype=INT, 100) ch1 = fluid.make_channel(dtype=INT, 100)
``` ```
In addition to that, we want channels that can hold more complex element types, e.g., Tensors of float16: In addition to that, we want channels that can hold more complex element types, e.g., Tensors of float16:
```python ```python
ch = fluid.make_chan(dtype=Tensor, etype=float16) ch = fluid.make_channel(dtype=Tensor, etype=float16)
``` ```
or Tensors of Tensors of float16 etc. or Tensors of Tensors of float16 etc.
...@@ -87,8 +87,136 @@ The point here is that we need a consistent way to compose types, like in C++ we ...@@ -87,8 +87,136 @@ The point here is that we need a consistent way to compose types, like in C++ we
### Send and Recv ### Send and Recv
Go's CSP implementation depends on data type *channel*. There are two types of channels:
1. The unblocked channel, or buffered channel, is a blocking queue with a non-zero sized buffer. The sending to buffered channel blocks if the buffer is full, and the receive operation blocks if the buffer is empty.
1. blocked channel, or unbuffered channel, is a blocking queue with no buffer. Both sending and receiving block with unbuffered channels.
There are four types of actions with a channel:
1. Create a channel
```go
ch := make(chan int) // this is an unbuffered channel
ch := make(chan int, 100) // this is a buffered channel of 100 ints.
```
1. Send
```go
ch <- 111
```
1. Recv
```go
y, ok <- ch
```
1. Close
```go
close(ch)
```
Please be aware that a closed channel is not a nil channel, which is `var ch chan int`.
There are some [axioms with channels](https://dave.cheney.net/2014/03/19/channel-axioms):
1. A send to a nil channel blocks forever
1. A receive from a nil channel blocks forever
1. A send to a closed channel panics
1. A receive from a closed channel returns the residual values and then zeros.
In Fluid, we have [buffered channels](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/details/buffered_channel.h) and [unbuffered channels](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/details/unbuffered_channel.h)
The following program illustrates the Python syntax for accessing Fluid buffers.
```python
import fluid
buffer_size = 10
ch = fluid.make_channel(dtype=INT, buffer_size)
# Now write three elements to the channel
with fluid.while(steps=buffer_size):
fluid.send(ch, step)
fluid.close_channel(ch)
with fluid.while(steps=buffer_size):
fluid.print(fluid.recv(ch))
```
The following example shows that to avoid the always-blocking behavior of unbuffered channels, we need to use Fluid's goroutines.
```python
import fluid
ch = fluid.make_channel(dtype=INT)
with fluid.go():
fluid.send(ch)
y = fluid.recv(ch)
fluid.close_channel(ch)
```
### Select ### Select
In Go, the `select` statement lets a goroutine wait on multiple communication operations. A `select` blocks until one of its cases can run, then it executes that case. It chooses one at random if multiple are ready.
```go
ch1 := make(chan int)
ch2 := make(chan int, 100)
x := 0
for {
select {
case ch1 <- x:
x := x + 1
case y <- ch2:
fmt.Println("Received on channel")
default:
fmt.Println("Default")
}
}
```
In Fluid, we should be able to do the same:
```python
ch1 = fluid.make_chan(dtype=INT)
ch2 = fluid.make_chan(dtype=INT, 100)
sel = fluid.select()
with sel.case(ch1, 'w', X):
fluid.layers.increment(X)
with sel.case(ch2, 'r', Y):
fluid.print("Received on Channel")
with sel.default():
fluid.print("Default")
```
In the above code snippet, `X` and `Y` are variables. Now let us look at each of these statements one by one.
- `sel.case(ch1, 'w', X)` : This specifies that we are writing to `ch1` and we want to write the integer in variable `X` to the channel. The character `w` is used here to make the syntax familiar to write syntax in Python I/O.
- `sel.case(ch2, 'r', Y)` : This specifies that we would like to read the result from `ch2` into variable `Y`. The character `r` is used here to make the syntax familiar to read syntax in Python I/O.
- `sel.default()` : This is equivalent to the default in Go `select`. If none of the channels are ready for read or write, then the fluid code in the default block will be executed.
## Example Programs ## Example Programs
### 1. RPC between Trainers and Parameter Servers ### 1. RPC between Trainers and Parameter Servers
......
...@@ -534,7 +534,7 @@ ParamGradInfoMap AppendBackward( ...@@ -534,7 +534,7 @@ ParamGradInfoMap AppendBackward(
auto root_block = program_desc.MutableBlock(root_block_idx); auto root_block = program_desc.MutableBlock(root_block_idx);
std::string fill_one_op_out = GradVarName(target.Name()); std::string fill_one_op_out = GradVarName(target.Name());
bool is_scalar = target.Shape() == std::vector<int64_t>{1}; bool is_scalar = target.GetShape() == std::vector<int64_t>{1};
PADDLE_ENFORCE(is_scalar, "target should be scalar"); PADDLE_ENFORCE(is_scalar, "target should be scalar");
VLOG(3) << "backward from loss=" << target.Name() VLOG(3) << "backward from loss=" << target.Name()
<< " data_type=" << target.GetDataType(); << " data_type=" << target.GetDataType();
...@@ -565,7 +565,7 @@ ParamGradInfoMap AppendBackward( ...@@ -565,7 +565,7 @@ ParamGradInfoMap AppendBackward(
auto var = root_block->Var(fill_one_op_out); auto var = root_block->Var(fill_one_op_out);
var->SetDataType(target.GetDataType()); var->SetDataType(target.GetDataType());
var->SetShape(target.Shape()); var->SetShape(target.GetShape());
auto& target_grad = retv[target.Name()]; auto& target_grad = retv[target.Name()];
target_grad.name_ = fill_one_op_out; target_grad.name_ = fill_one_op_out;
target_grad.block_idx_ = root_block_idx; target_grad.block_idx_ = root_block_idx;
......
...@@ -60,6 +60,47 @@ TEST(Channel, SufficientBufferSizeDoesntBlock) { ...@@ -60,6 +60,47 @@ TEST(Channel, SufficientBufferSizeDoesntBlock) {
delete ch; delete ch;
} }
TEST(Channel, SendOnClosedChannelPanics) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
size_t i = 5;
EXPECT_EQ(ch->Send(&i), true); // should not block or panic
CloseChannel(ch);
EXPECT_EQ(ch->Send(&i), false); // should panic
delete ch;
}
TEST(Channel, ReceiveFromBufferedChannelReturnResidualValuesTest) {
const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size);
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Send(&i), true); // sending should not block
}
size_t out;
for (size_t i = 0; i < buffer_size / 2; ++i) {
EXPECT_EQ(ch->Receive(&out), true); // receiving should not block
EXPECT_EQ(out, i);
}
CloseChannel(ch);
for (size_t i = buffer_size / 2; i < buffer_size; ++i) {
EXPECT_EQ(ch->Receive(&out),
true); // receving should return residual values.
EXPECT_EQ(out, i);
}
for (size_t i = 0; i < buffer_size; ++i) {
EXPECT_EQ(ch->Receive(&out),
false); // after receiving residual values, return zeros.
// Note: we cannot check EXPECT_EQ(out, 0), because C++ doesn't
// define zero values like Go does.
}
delete ch;
}
TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) { TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) {
const size_t buffer_size = 10; const size_t buffer_size = 10;
auto ch = MakeChannel<size_t>(buffer_size); auto ch = MakeChannel<size_t>(buffer_size);
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <atomic>
#include <condition_variable> #include <condition_variable>
#include <deque> #include <deque>
#include <mutex> #include <mutex>
...@@ -42,7 +43,7 @@ class Buffered : public paddle::framework::Channel<T> { ...@@ -42,7 +43,7 @@ class Buffered : public paddle::framework::Channel<T> {
std::condition_variable empty_cond_var_; std::condition_variable empty_cond_var_;
std::condition_variable full_cond_var_; std::condition_variable full_cond_var_;
std::deque<T> channel_; std::deque<T> channel_;
bool closed_; std::atomic<bool> closed_{false};
Buffered(size_t cap) : cap_(cap), closed_(false) { Buffered(size_t cap) : cap_(cap), closed_(false) {
PADDLE_ENFORCE_GT(cap, 0); PADDLE_ENFORCE_GT(cap, 0);
...@@ -53,10 +54,13 @@ class Buffered : public paddle::framework::Channel<T> { ...@@ -53,10 +54,13 @@ class Buffered : public paddle::framework::Channel<T> {
template <typename T> template <typename T>
bool Buffered<T>::Send(T* item) { bool Buffered<T>::Send(T* item) {
bool ret = false;
if (closed_) {
return ret;
}
std::unique_lock<std::mutex> lock(mu_); std::unique_lock<std::mutex> lock(mu_);
full_cond_var_.wait(lock, full_cond_var_.wait(lock,
[this]() { return channel_.size() < cap_ || closed_; }); [this]() { return channel_.size() < cap_ || closed_; });
bool ret = false;
if (!closed_) { if (!closed_) {
channel_.push_back(std::move(*item)); channel_.push_back(std::move(*item));
lock.unlock(); lock.unlock();
...@@ -71,7 +75,7 @@ bool Buffered<T>::Receive(T* item) { ...@@ -71,7 +75,7 @@ bool Buffered<T>::Receive(T* item) {
std::unique_lock<std::mutex> lock(mu_); std::unique_lock<std::mutex> lock(mu_);
empty_cond_var_.wait(lock, [this]() { return !channel_.empty() || closed_; }); empty_cond_var_.wait(lock, [this]() { return !channel_.empty() || closed_; });
bool ret = false; bool ret = false;
if (!closed_) { if (!channel_.empty()) {
*item = std::move(channel_.front()); *item = std::move(channel_.front());
channel_.pop_front(); channel_.pop_front();
full_cond_var_.notify_one(); full_cond_var_.notify_one();
...@@ -82,6 +86,9 @@ bool Buffered<T>::Receive(T* item) { ...@@ -82,6 +86,9 @@ bool Buffered<T>::Receive(T* item) {
template <typename T> template <typename T>
void Buffered<T>::Close() { void Buffered<T>::Close() {
if (closed_) {
return;
}
std::unique_lock<std::mutex> lock(mu_); std::unique_lock<std::mutex> lock(mu_);
closed_ = true; closed_ = true;
NotifyAllParticipants(&lock); NotifyAllParticipants(&lock);
......
...@@ -58,6 +58,10 @@ class UnBuffered : public paddle::framework::Channel<T> { ...@@ -58,6 +58,10 @@ class UnBuffered : public paddle::framework::Channel<T> {
// be sent from a writer to a reader. // be sent from a writer to a reader.
template <typename T> template <typename T>
bool UnBuffered<T>::Send(T* data) { bool UnBuffered<T>::Send(T* data) {
bool ret = false;
if (closed_) {
return ret;
}
// Prevent other writers from entering // Prevent other writers from entering
std::unique_lock<std::recursive_mutex> writer_lock(mu_write_); std::unique_lock<std::recursive_mutex> writer_lock(mu_write_);
writer_found_ = true; writer_found_ = true;
...@@ -66,7 +70,6 @@ bool UnBuffered<T>::Send(T* data) { ...@@ -66,7 +70,6 @@ bool UnBuffered<T>::Send(T* data) {
cv_writer_.wait(cv_lock, cv_writer_.wait(cv_lock,
[this]() { return reader_found_ == true || closed_; }); [this]() { return reader_found_ == true || closed_; });
cv_reader_.notify_one(); cv_reader_.notify_one();
bool ret = false;
if (!closed_) { if (!closed_) {
std::unique_lock<std::mutex> channel_lock(mu_ch_); std::unique_lock<std::mutex> channel_lock(mu_ch_);
item = data; item = data;
...@@ -114,6 +117,9 @@ bool UnBuffered<T>::Receive(T* data) { ...@@ -114,6 +117,9 @@ bool UnBuffered<T>::Receive(T* data) {
// that take place once the channel is closed. // that take place once the channel is closed.
template <typename T> template <typename T>
void UnBuffered<T>::Close() { void UnBuffered<T>::Close() {
if (closed_) {
return;
}
std::unique_lock<std::mutex> lock(mu_ch_); std::unique_lock<std::mutex> lock(mu_ch_);
item = nullptr; item = nullptr;
closed_ = true; closed_ = true;
......
...@@ -116,6 +116,8 @@ message LoDTensorArrayDesc { ...@@ -116,6 +116,8 @@ message LoDTensorArrayDesc {
optional int32 lod_level = 2 [ default = 0 ]; optional int32 lod_level = 2 [ default = 0 ];
} }
message Reader { repeated LoDTensorDesc lod_tensor = 1; }
message VarDesc { message VarDesc {
enum VarType { enum VarType {
LOD_TENSOR = 1; LOD_TENSOR = 1;
...@@ -126,13 +128,15 @@ message VarDesc { ...@@ -126,13 +128,15 @@ message VarDesc {
LOD_RANK_TABLE = 6; LOD_RANK_TABLE = 6;
LOD_TENSOR_ARRAY = 7; LOD_TENSOR_ARRAY = 7;
PLACE_LIST = 8; PLACE_LIST = 8;
READER = 9;
} }
required string name = 1; required string name = 1;
required VarType type = 2; required VarType type = 2;
optional LoDTensorDesc lod_tensor = 3; optional bool persistable = 3 [ default = false ];
optional TensorDesc selected_rows = 4; optional LoDTensorDesc lod_tensor = 4;
optional TensorDesc selected_rows = 5;
optional LoDTensorArrayDesc tensor_array = 6; optional LoDTensorArrayDesc tensor_array = 6;
optional bool persistable = 5 [ default = false ]; optional Reader reader = 7;
} }
message BlockDesc { message BlockDesc {
......
...@@ -458,11 +458,11 @@ DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const { ...@@ -458,11 +458,11 @@ DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const {
auto var = block_.FindVarRecursive(name); auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name); PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
try { try {
auto shape = var->Shape(); auto shape = var->GetShape();
if (shape.empty()) { if (shape.empty()) {
return framework::make_ddim({0UL}); return framework::make_ddim({0UL});
} else { } else {
return framework::make_ddim(var->Shape()); return framework::make_ddim(var->GetShape());
} }
} catch (...) { } catch (...) {
VLOG(5) << "GetDim of variable " << name << " error"; VLOG(5) << "GetDim of variable " << name << " error";
......
...@@ -53,7 +53,7 @@ TEST(ProgramDesc, copy_ctor) { ...@@ -53,7 +53,7 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_NE(copy, var_before); ASSERT_NE(copy, var_before);
ASSERT_EQ(copy->Name(), var_before->Name()); ASSERT_EQ(copy->Name(), var_before->Name());
ASSERT_EQ(copy->GetType(), var_before->GetType()); ASSERT_EQ(copy->GetType(), var_before->GetType());
ASSERT_EQ(copy->Shape(), var_before->Shape()); ASSERT_EQ(copy->GetShape(), var_before->GetShape());
ASSERT_EQ(copy->Proto()->SerializeAsString(), ASSERT_EQ(copy->Proto()->SerializeAsString(),
var_before->Proto()->SerializeAsString()); var_before->Proto()->SerializeAsString());
}; };
...@@ -117,7 +117,7 @@ TEST(ProgramDescBind, serialize_and_deserialize) { ...@@ -117,7 +117,7 @@ TEST(ProgramDescBind, serialize_and_deserialize) {
ASSERT_NE(restored, var_before); ASSERT_NE(restored, var_before);
ASSERT_EQ(restored->Name(), var_before->Name()); ASSERT_EQ(restored->Name(), var_before->Name());
ASSERT_EQ(restored->GetType(), var_before->GetType()); ASSERT_EQ(restored->GetType(), var_before->GetType());
ASSERT_EQ(restored->Shape(), var_before->Shape()); ASSERT_EQ(restored->GetShape(), var_before->GetShape());
ASSERT_EQ(restored->Proto()->SerializeAsString(), ASSERT_EQ(restored->Proto()->SerializeAsString(),
var_before->Proto()->SerializeAsString()); var_before->Proto()->SerializeAsString());
}; };
......
...@@ -21,7 +21,8 @@ limitations under the License. */ ...@@ -21,7 +21,8 @@ limitations under the License. */
#include <queue> #include <queue>
#include <thread> #include <thread>
#include <vector> #include <vector>
#include "glog/logging.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN #include "paddle/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
namespace paddle { namespace paddle {
...@@ -31,7 +32,7 @@ namespace framework { ...@@ -31,7 +32,7 @@ namespace framework {
// number of threads. // number of threads.
class ThreadPool { class ThreadPool {
public: public:
typedef std::packaged_task<void()> Task; using Task = std::packaged_task<std::unique_ptr<platform::EnforceNotMet>()>;
// Returns the singleton of ThreadPool. // Returns the singleton of ThreadPool.
static ThreadPool* GetInstance(); static ThreadPool* GetInstance();
...@@ -52,9 +53,28 @@ class ThreadPool { ...@@ -52,9 +53,28 @@ class ThreadPool {
// std::future::wait(). // std::future::wait().
template <typename Callback> template <typename Callback>
std::future<void> Run(Callback fn) { std::future<void> Run(Callback fn) {
auto f = this->RunAndGetException(fn);
return std::async(std::launch::deferred, ExceptionHandler(std::move(f)));
}
template <typename Callback>
std::future<std::unique_ptr<platform::EnforceNotMet>> RunAndGetException(
Callback fn) {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
Task task(std::bind(fn)); Task task([fn]() -> std::unique_ptr<platform::EnforceNotMet> {
std::future<void> f = task.get_future(); try {
fn();
return nullptr;
} catch (platform::EnforceNotMet ex) {
return std::unique_ptr<platform::EnforceNotMet>(
new platform::EnforceNotMet(ex));
} catch (...) {
LOG(FATAL)
<< "Unexpected exception is catched in thread pool. All "
"throwable exception in Fluid should be an EnforceNotMet.";
}
});
std::future<std::unique_ptr<platform::EnforceNotMet>> f = task.get_future();
tasks_.push(std::move(task)); tasks_.push(std::move(task));
lock.unlock(); lock.unlock();
scheduled_.notify_one(); scheduled_.notify_one();
...@@ -65,6 +85,22 @@ class ThreadPool { ...@@ -65,6 +85,22 @@ class ThreadPool {
void Wait(); void Wait();
private: private:
struct ExceptionHandler {
mutable std::future<std::unique_ptr<platform::EnforceNotMet>> future_;
explicit ExceptionHandler(
std::future<std::unique_ptr<platform::EnforceNotMet>>&& f)
: future_(std::move(f)) {}
void operator()() const {
auto ex = this->future_.get();
if (ex != nullptr) {
LOG(FATAL) << "The exception is thrown inside the thread pool. You "
"should use RunAndGetException to handle the exception.\n"
"The default exception handler is LOG(FATAL)."
<< ex->what();
}
}
};
DISABLE_COPY_AND_ASSIGN(ThreadPool); DISABLE_COPY_AND_ASSIGN(ThreadPool);
explicit ThreadPool(int num_threads); explicit ThreadPool(int num_threads);
......
...@@ -26,18 +26,91 @@ void VarDesc::SetShape(const std::vector<int64_t> &dims) { ...@@ -26,18 +26,91 @@ void VarDesc::SetShape(const std::vector<int64_t> &dims) {
VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims()); VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims());
} }
void VarDesc::SetTensorDescNum(size_t num) {
switch (desc_.type()) {
case proto::VarDesc::READER: {
auto *lod_tensors_ptr = desc_.mutable_reader()->mutable_lod_tensor();
lod_tensors_ptr->Clear();
for (size_t i = 0; i < num; ++i) {
lod_tensors_ptr->Add();
}
return;
} break;
default:
PADDLE_THROW(
"Setting 'sub_tensor_number' is not supported by the type of var %s.",
this->Name());
}
}
size_t VarDesc::GetTensorDescNum() const {
switch (desc_.type()) {
case proto::VarDesc::READER:
return desc_.reader().lod_tensor_size();
break;
default:
PADDLE_THROW(
"Getting 'sub_tensor_number' is not supported by the type of var %s.",
this->Name());
}
}
void VarDesc::SetShapes(
const std::vector<std::vector<int64_t>> &multiple_dims) {
PADDLE_ENFORCE_EQ(multiple_dims.size(), GetTensorDescNum(),
"The number of given shapes(%d) doesn't equal to the "
"number of sub tensor.",
multiple_dims.size(), GetTensorDescNum());
std::vector<proto::TensorDesc *> tensors = mutable_tensor_descs();
for (size_t i = 0; i < multiple_dims.size(); ++i) {
VectorToRepeated(multiple_dims[i], tensors[i]->mutable_dims());
}
}
std::vector<int64_t> VarDesc::GetShape() const {
return RepeatedToVector(tensor_desc().dims());
}
std::vector<std::vector<int64_t>> VarDesc::GetShapes() const {
std::vector<proto::TensorDesc> descs = tensor_descs();
std::vector<std::vector<int64_t>> res;
res.reserve(descs.size());
for (const auto &tensor_desc : descs) {
res.push_back(RepeatedToVector(tensor_desc.dims()));
}
return res;
}
void VarDesc::SetDataType(proto::DataType data_type) { void VarDesc::SetDataType(proto::DataType data_type) {
mutable_tensor_desc()->set_data_type(data_type); mutable_tensor_desc()->set_data_type(data_type);
} }
std::vector<int64_t> VarDesc::Shape() const { void VarDesc::SetDataTypes(
return RepeatedToVector(tensor_desc().dims()); const std::vector<proto::DataType> &multiple_data_type) {
PADDLE_ENFORCE_EQ(multiple_data_type.size(), GetTensorDescNum(),
"The number of given data types(%d) doesn't equal to the "
"number of sub tensor.",
multiple_data_type.size(), GetTensorDescNum());
std::vector<proto::TensorDesc *> tensor_descs = mutable_tensor_descs();
for (size_t i = 0; i < multiple_data_type.size(); ++i) {
tensor_descs[i]->set_data_type(multiple_data_type[i]);
}
} }
proto::DataType VarDesc::GetDataType() const { proto::DataType VarDesc::GetDataType() const {
return tensor_desc().data_type(); return tensor_desc().data_type();
} }
std::vector<proto::DataType> VarDesc::GetDataTypes() const {
std::vector<proto::TensorDesc> descs = tensor_descs();
std::vector<proto::DataType> res;
res.reserve(descs.size());
for (const auto &tensor_desc : descs) {
res.push_back(tensor_desc.data_type());
}
return res;
}
void VarDesc::SetLoDLevel(int32_t lod_level) { void VarDesc::SetLoDLevel(int32_t lod_level) {
switch (desc_.type()) { switch (desc_.type()) {
case proto::VarDesc::LOD_TENSOR: case proto::VarDesc::LOD_TENSOR:
...@@ -47,8 +120,28 @@ void VarDesc::SetLoDLevel(int32_t lod_level) { ...@@ -47,8 +120,28 @@ void VarDesc::SetLoDLevel(int32_t lod_level) {
desc_.mutable_tensor_array()->set_lod_level(lod_level); desc_.mutable_tensor_array()->set_lod_level(lod_level);
break; break;
default: default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel", PADDLE_THROW(
desc_.tensor_array().lod_level()); "Setting 'lod_level' is not supported by the type of var %s.",
this->Name());
}
}
void VarDesc::SetLoDLevels(const std::vector<int32_t> &multiple_lod_level) {
PADDLE_ENFORCE_EQ(multiple_lod_level.size(), GetTensorDescNum(),
"The number of given data types(%d) doesn't equal to the "
"number of sub tensor.",
multiple_lod_level.size(), GetTensorDescNum());
switch (desc_.type()) {
case proto::VarDesc::READER: {
size_t i = 0;
for (auto &lod_tensor : *desc_.mutable_reader()->mutable_lod_tensor()) {
lod_tensor.set_lod_level(multiple_lod_level[i++]);
}
} break;
default:
PADDLE_THROW(
"Setting 'lod_levels' is not supported by the type of var %s.",
this->Name());
} }
} }
...@@ -59,13 +152,31 @@ int32_t VarDesc::GetLoDLevel() const { ...@@ -59,13 +152,31 @@ int32_t VarDesc::GetLoDLevel() const {
case proto::VarDesc::LOD_TENSOR_ARRAY: case proto::VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().lod_level(); return desc_.tensor_array().lod_level();
default: default:
PADDLE_THROW("Tensor type=%d does not support LoDLevel", PADDLE_THROW(
desc_.tensor_array().lod_level()); "Getting 'lod_level' is not supported by the type of var %s.",
this->Name());
}
}
std::vector<int32_t> VarDesc::GetLoDLevels() const {
std::vector<int32_t> res;
switch (desc_.type()) {
case proto::VarDesc::READER:
res.reserve(desc_.reader().lod_tensor_size());
for (auto &lod_tensor : desc_.reader().lod_tensor()) {
res.push_back(lod_tensor.lod_level());
}
return res;
break;
default:
PADDLE_THROW(
"Getting 'lod_levels' is not supported by the type of var %s.",
this->Name());
} }
} }
const proto::TensorDesc &VarDesc::tensor_desc() const { const proto::TensorDesc &VarDesc::tensor_desc() const {
PADDLE_ENFORCE(desc_.has_type(), "invoke TensorDesc must after set type"); PADDLE_ENFORCE(desc_.has_type(), "The var's type hasn't been set.");
switch (desc_.type()) { switch (desc_.type()) {
case proto::VarDesc::SELECTED_ROWS: case proto::VarDesc::SELECTED_ROWS:
return desc_.selected_rows(); return desc_.selected_rows();
...@@ -74,13 +185,32 @@ const proto::TensorDesc &VarDesc::tensor_desc() const { ...@@ -74,13 +185,32 @@ const proto::TensorDesc &VarDesc::tensor_desc() const {
case proto::VarDesc::LOD_TENSOR_ARRAY: case proto::VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().tensor(); return desc_.tensor_array().tensor();
default: default:
PADDLE_THROW("The type of var %s is unsupported.", this->Name()); PADDLE_THROW(
"Getting 'tensor_desc' is not supported by the type of var %s.",
this->Name());
}
}
std::vector<proto::TensorDesc> VarDesc::tensor_descs() const {
PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set.");
std::vector<proto::TensorDesc> res;
res.reserve(GetTensorDescNum());
switch (desc_.type()) {
case proto::VarDesc::READER:
for (const auto &lod_tensor : desc_.reader().lod_tensor()) {
res.push_back(lod_tensor.tensor());
}
return res;
default:
PADDLE_THROW(
"Getting 'tensor_descs' is not supported by the type of var "
"%s.",
this->Name());
} }
} }
proto::TensorDesc *VarDesc::mutable_tensor_desc() { proto::TensorDesc *VarDesc::mutable_tensor_desc() {
PADDLE_ENFORCE(desc_.has_type(), PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set.");
"invoke MutableTensorDesc must after set type");
switch (desc_.type()) { switch (desc_.type()) {
case proto::VarDesc::SELECTED_ROWS: case proto::VarDesc::SELECTED_ROWS:
return desc_.mutable_selected_rows(); return desc_.mutable_selected_rows();
...@@ -89,8 +219,30 @@ proto::TensorDesc *VarDesc::mutable_tensor_desc() { ...@@ -89,8 +219,30 @@ proto::TensorDesc *VarDesc::mutable_tensor_desc() {
case proto::VarDesc::LOD_TENSOR_ARRAY: case proto::VarDesc::LOD_TENSOR_ARRAY:
return desc_.mutable_tensor_array()->mutable_tensor(); return desc_.mutable_tensor_array()->mutable_tensor();
default: default:
PADDLE_THROW("Unexpected branch."); PADDLE_THROW(
"Getting 'mutable_tensor_desc' is not supported by the type of var "
"%s.",
this->Name());
} }
} }
std::vector<proto::TensorDesc *> VarDesc::mutable_tensor_descs() {
PADDLE_ENFORCE(desc_.has_type(), "The var type hasn't been set.");
std::vector<proto::TensorDesc *> res;
res.reserve(GetTensorDescNum());
switch (desc_.type()) {
case proto::VarDesc::READER:
for (auto &lod_tensor : *desc_.mutable_reader()->mutable_lod_tensor()) {
res.push_back(lod_tensor.mutable_tensor());
}
return res;
default:
PADDLE_THROW(
"Getting 'tensor_descs' is not supported by the type of var "
"%s.",
this->Name());
}
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -68,18 +68,34 @@ class VarDesc { ...@@ -68,18 +68,34 @@ class VarDesc {
void SetName(std::string name) { desc_.set_name(name); } void SetName(std::string name) { desc_.set_name(name); }
void SetTensorDescNum(size_t num);
size_t GetTensorDescNum() const;
void SetShape(const std::vector<int64_t> &dims); void SetShape(const std::vector<int64_t> &dims);
void SetShapes(const std::vector<std::vector<int64_t>> &multiple_dims);
std::vector<int64_t> GetShape() const;
std::vector<std::vector<int64_t>> GetShapes() const;
void SetDataType(proto::DataType data_type); void SetDataType(proto::DataType data_type);
std::vector<int64_t> Shape() const; void SetDataTypes(const std::vector<proto::DataType> &multiple_data_type);
proto::DataType GetDataType() const; proto::DataType GetDataType() const;
std::vector<proto::DataType> GetDataTypes() const;
void SetLoDLevel(int32_t lod_level); void SetLoDLevel(int32_t lod_level);
void SetLoDLevels(const std::vector<int32_t> &multiple_lod_level);
int32_t GetLoDLevel() const; int32_t GetLoDLevel() const;
std::vector<int32_t> GetLoDLevels() const;
proto::VarDesc::VarType GetType() const; proto::VarDesc::VarType GetType() const;
void SetType(proto::VarDesc::VarType type); void SetType(proto::VarDesc::VarType type);
...@@ -90,7 +106,9 @@ class VarDesc { ...@@ -90,7 +106,9 @@ class VarDesc {
private: private:
const proto::TensorDesc &tensor_desc() const; const proto::TensorDesc &tensor_desc() const;
std::vector<proto::TensorDesc> tensor_descs() const;
proto::TensorDesc *mutable_tensor_desc(); proto::TensorDesc *mutable_tensor_desc();
std::vector<proto::TensorDesc *> mutable_tensor_descs();
proto::VarDesc desc_; proto::VarDesc desc_;
}; };
......
...@@ -55,7 +55,7 @@ void LoadPersistables(framework::Executor& executor, ...@@ -55,7 +55,7 @@ void LoadPersistables(framework::Executor& executor,
VLOG(3) << "parameter's name: " << var->Name(); VLOG(3) << "parameter's name: " << var->Name();
framework::VarDesc* new_var = load_block->Var(var->Name()); framework::VarDesc* new_var = load_block->Var(var->Name());
new_var->SetShape(var->Shape()); new_var->SetShape(var->GetShape());
new_var->SetDataType(var->GetDataType()); new_var->SetDataType(var->GetDataType());
new_var->SetType(var->GetType()); new_var->SetType(var->GetType());
new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetLoDLevel(var->GetLoDLevel());
......
...@@ -3,5 +3,17 @@ cc_test(test_inference_recognize_digits_mlp ...@@ -3,5 +3,17 @@ cc_test(test_inference_recognize_digits_mlp
SRCS test_inference_recognize_digits.cc SRCS test_inference_recognize_digits.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
ARGS --dirname=${PYTHON_TESTS_DIR}/book/recognize_digits_mlp.inference.model) ARGS --dirname=${PYTHON_TESTS_DIR}/book/recognize_digits_mlp.inference.model)
cc_test(test_inference_image_classification_vgg
SRCS test_inference_image_classification.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
ARGS --dirname=${PYTHON_TESTS_DIR}/book/image_classification_vgg.inference.model)
cc_test(test_inference_image_classification_resnet
SRCS test_inference_image_classification.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
ARGS --dirname=${PYTHON_TESTS_DIR}/book/image_classification_resnet.inference.model)
set_tests_properties(test_inference_recognize_digits_mlp set_tests_properties(test_inference_recognize_digits_mlp
PROPERTIES DEPENDS test_recognize_digits) PROPERTIES DEPENDS test_recognize_digits)
set_tests_properties(test_inference_image_classification_vgg
PROPERTIES DEPENDS test_image_classification_train)
set_tests_properties(test_inference_image_classification_resnet
PROPERTIES DEPENDS test_image_classification_train)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <time.h>
#include <sstream>
#include "gflags/gflags.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
template <typename Place, typename T>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
// 1. Define place, executor and scope
auto place = Place();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
// 2. Initialize the inference_program and load all parameters from file
auto inference_program = paddle::inference::Load(executor, *scope, dirname);
// 3. Get the feed_target_names and fetch_target_names
const std::vector<std::string>& feed_target_names =
inference_program->GetFeedTargetNames();
const std::vector<std::string>& fetch_target_names =
inference_program->GetFetchTargetNames();
// 4. Prepare inputs: set up maps for feed targets
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
for (size_t i = 0; i < feed_target_names.size(); ++i) {
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
feed_targets[feed_target_names[i]] = cpu_feeds[i];
}
// 5. Define Tensor to get the outputs: set up maps for fetch targets
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
}
// 6. Run the inference program
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
delete scope;
}
TEST(inference, image_classification) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor input;
srand(time(0));
float* input_ptr =
input.mutable_data<float>({1, 3, 32, 32}, paddle::platform::CPUPlace());
for (int i = 0; i < 3072; ++i) {
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
}
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace, float>(
dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace, float>(
dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims();
EXPECT_EQ(output1.dims(), output2.dims());
EXPECT_EQ(output1.numel(), output2.numel());
float err = 1E-3;
int count = 0;
for (int64_t i = 0; i < output1.numel(); ++i) {
if (fabs(output1.data<float>()[i] - output2.data<float>()[i]) > err) {
count++;
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
#endif
}
...@@ -58,6 +58,47 @@ void TestInference(const std::string& dirname, ...@@ -58,6 +58,47 @@ void TestInference(const std::string& dirname,
delete scope; delete scope;
} }
template <typename T>
void SetupTensor(paddle::framework::LoDTensor& input,
paddle::framework::DDim dims,
T lower,
T upper) {
srand(time(0));
float* input_ptr = input.mutable_data<T>(dims, paddle::platform::CPUPlace());
for (int i = 0; i < input.numel(); ++i) {
input_ptr[i] =
(static_cast<T>(rand()) / static_cast<T>(RAND_MAX)) * (upper - lower) +
lower;
}
}
template <typename T>
void CheckError(paddle::framework::LoDTensor& output1,
paddle::framework::LoDTensor& output2) {
// Check lod information
EXPECT_EQ(output1.lod(), output2.lod());
EXPECT_EQ(output1.dims(), output2.dims());
EXPECT_EQ(output1.numel(), output2.numel());
T err = static_cast<T>(0);
if (typeid(T) == typeid(float)) {
err = 1E-3;
} else if (typeid(T) == typeid(double)) {
err = 1E-6;
} else {
err = 0;
}
size_t count = 0;
for (int64_t i = 0; i < output1.numel(); ++i) {
if (fabs(output1.data<T>()[i] - output2.data<T>()[i]) > err) {
count++;
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
}
TEST(inference, recognize_digits) { TEST(inference, recognize_digits) {
if (FLAGS_dirname.empty()) { if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model"; LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
...@@ -70,12 +111,10 @@ TEST(inference, recognize_digits) { ...@@ -70,12 +111,10 @@ TEST(inference, recognize_digits) {
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc // In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle::framework::LoDTensor input; paddle::framework::LoDTensor input;
srand(time(0)); // Use normilized image pixels as input data,
float* input_ptr = // which should be in the range [-1.0, 1.0].
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace()); SetupTensor<float>(
for (int i = 0; i < 784; ++i) { input, {1, 28, 28}, static_cast<float>(-1), static_cast<float>(1));
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
}
std::vector<paddle::framework::LoDTensor*> cpu_feeds; std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input); cpu_feeds.push_back(&input);
...@@ -98,16 +137,6 @@ TEST(inference, recognize_digits) { ...@@ -98,16 +137,6 @@ TEST(inference, recognize_digits) {
dirname, cpu_feeds, cpu_fetchs2); dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims(); LOG(INFO) << output2.dims();
EXPECT_EQ(output1.dims(), output2.dims()); CheckError<float>(output1, output2);
EXPECT_EQ(output1.numel(), output2.numel());
float err = 1E-3;
int count = 0;
for (int64_t i = 0; i < output1.numel(); ++i) {
if (fabs(output1.data<float>()[i] - output2.data<float>()[i]) > err) {
count++;
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
#endif #endif
} }
...@@ -85,7 +85,7 @@ static inline void GetMaxScoreIndex( ...@@ -85,7 +85,7 @@ static inline void GetMaxScoreIndex(
std::stable_sort(sorted_indices->begin(), sorted_indices->end(), std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
SortScorePairDescend<int>); SortScorePairDescend<int>);
// Keep top_k scores if needed. // Keep top_k scores if needed.
if (top_k > -1 && top_k < sorted_indices->size()) { if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
sorted_indices->resize(top_k); sorted_indices->resize(top_k);
} }
} }
...@@ -151,7 +151,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -151,7 +151,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
while (sorted_indices.size() != 0) { while (sorted_indices.size() != 0) {
const int idx = sorted_indices.front().second; const int idx = sorted_indices.front().second;
bool keep = true; bool keep = true;
for (int k = 0; k < selected_indices->size(); ++k) { for (size_t k = 0; k < selected_indices->size(); ++k) {
if (keep) { if (keep) {
const int kept_idx = (*selected_indices)[k]; const int kept_idx = (*selected_indices)[k];
T overlap = JaccardOverlap<T>(bbox_data + idx * box_size, T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
...@@ -201,7 +201,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -201,7 +201,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int label = it.first; int label = it.first;
const T* sdata = scores_data + label * predict_dim; const T* sdata = scores_data + label * predict_dim;
const std::vector<int>& label_indices = it.second; const std::vector<int>& label_indices = it.second;
for (int j = 0; j < label_indices.size(); ++j) { for (size_t j = 0; j < label_indices.size(); ++j) {
int idx = label_indices[j]; int idx = label_indices[j];
PADDLE_ENFORCE_LT(idx, predict_dim); PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs.push_back( score_index_pairs.push_back(
...@@ -215,7 +215,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -215,7 +215,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
// Store the new indices. // Store the new indices.
std::map<int, std::vector<int>> new_indices; std::map<int, std::vector<int>> new_indices;
for (int j = 0; j < score_index_pairs.size(); ++j) { for (size_t j = 0; j < score_index_pairs.size(); ++j) {
int label = score_index_pairs[j].second.first; int label = score_index_pairs[j].second.first;
int idx = score_index_pairs[j].second.second; int idx = score_index_pairs[j].second.second;
new_indices[label].push_back(idx); new_indices[label].push_back(idx);
...@@ -238,7 +238,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -238,7 +238,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int label = it.first; int label = it.first;
const T* sdata = scores_data + label * predict_dim; const T* sdata = scores_data + label * predict_dim;
const std::vector<int>& indices = it.second; const std::vector<int>& indices = it.second;
for (int j = 0; j < indices.size(); ++j) { for (size_t j = 0; j < indices.size(); ++j) {
int idx = indices[j]; int idx = indices[j];
const T* bdata = bboxes_data + idx * kBBoxSize; const T* bdata = bboxes_data + idx * kBBoxSize;
odata[count * kOutputDim] = label; // label odata[count * kOutputDim] = label; // label
......
...@@ -44,12 +44,6 @@ class PriorBoxOp : public framework::OperatorWithKernel { ...@@ -44,12 +44,6 @@ class PriorBoxOp : public framework::OperatorWithKernel {
auto aspect_ratios = ctx->Attrs().Get<std::vector<float>>("aspect_ratios"); auto aspect_ratios = ctx->Attrs().Get<std::vector<float>>("aspect_ratios");
bool flip = ctx->Attrs().Get<bool>("flip"); bool flip = ctx->Attrs().Get<bool>("flip");
PADDLE_ENFORCE_GT(min_sizes.size(), 0,
"Size of min_sizes must be at least 1.");
for (size_t i = 0; i < min_sizes.size(); ++i) {
PADDLE_ENFORCE_GT(min_sizes[i], 0, "min_sizes[%d] must be positive.", i);
}
std::vector<float> aspect_ratios_vec; std::vector<float> aspect_ratios_vec;
ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec); ExpandAspectRatios(aspect_ratios, flip, aspect_ratios_vec);
...@@ -65,17 +59,6 @@ class PriorBoxOp : public framework::OperatorWithKernel { ...@@ -65,17 +59,6 @@ class PriorBoxOp : public framework::OperatorWithKernel {
} }
} }
PADDLE_ENFORCE_EQ(variances.size(), 4, "Must and only provide 4 variance.");
for (size_t i = 0; i < variances.size(); ++i) {
PADDLE_ENFORCE_GT(variances[i], 0.0,
"variance[%d] must be greater than 0.", i);
}
const float step_h = ctx->Attrs().Get<float>("step_h");
PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0.");
const float step_w = ctx->Attrs().Get<float>("step_w");
PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0.");
std::vector<int64_t> dim_vec(4); std::vector<int64_t> dim_vec(4);
dim_vec[0] = input_dims[2]; dim_vec[0] = input_dims[2];
dim_vec[1] = input_dims[3]; dim_vec[1] = input_dims[3];
...@@ -106,26 +89,54 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -106,26 +89,54 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"PriorBoxOp. The layout is [H, W, num_priors, 4]. " "PriorBoxOp. The layout is [H, W, num_priors, 4]. "
"H is the height of input, W is the width of input, num_priors " "H is the height of input, W is the width of input, num_priors "
"is the box count of each position."); "is the box count of each position.");
AddAttr<std::vector<int>>("min_sizes", "(vector<int>) ",
"List of min sizes of generated prior boxes."); AddAttr<std::vector<int>>("min_sizes",
AddAttr<std::vector<int>>("max_sizes", "(vector<int>) ", "(vector<int>) List of min sizes "
"List of max sizes of generated prior boxes."); "of generated prior boxes.")
.AddCustomChecker([](const std::vector<int>& min_sizes) {
PADDLE_ENFORCE_GT(min_sizes.size(), 0,
"Size of min_sizes must be at least 1.");
for (size_t i = 0; i < min_sizes.size(); ++i) {
PADDLE_ENFORCE_GT(min_sizes[i], 0,
"min_sizes[%d] must be positive.", i);
}
});
AddAttr<std::vector<int>>(
"max_sizes",
"(vector<int>) List of max sizes of generated prior boxes.");
AddAttr<std::vector<float>>( AddAttr<std::vector<float>>(
"aspect_ratios", "(vector<float>) ", "aspect_ratios",
"List of aspect ratios of generated prior boxes."); "(vector<float>) List of aspect ratios of generated prior boxes.");
AddAttr<std::vector<float>>( AddAttr<std::vector<float>>(
"variances", "(vector<float>) ", "variances",
"List of variances to be encoded in prior boxes."); "(vector<float>) List of variances to be encoded in prior boxes.")
AddAttr<bool>("flip", "(bool) ", "Whether to flip aspect ratios.") .AddCustomChecker([](const std::vector<float>& variances) {
PADDLE_ENFORCE_EQ(variances.size(), 4,
"Must and only provide 4 variance.");
for (size_t i = 0; i < variances.size(); ++i) {
PADDLE_ENFORCE_GT(variances[i], 0.0,
"variance[%d] must be greater than 0.", i);
}
});
AddAttr<bool>("flip", "(bool) Whether to flip aspect ratios.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>("clip", "(bool) ", "Whether to clip out-of-boundary boxes.") AddAttr<bool>("clip", "(bool) Whether to clip out-of-boundary boxes.")
.SetDefault(true); .SetDefault(true);
AddAttr<float>("step_w", AddAttr<float>("step_w",
"Prior boxes step across width, 0 for auto calculation.") "Prior boxes step across width, 0 for auto calculation.")
.SetDefault(0.0); .SetDefault(0.0)
.AddCustomChecker([](const float& step_w) {
PADDLE_ENFORCE_GT(step_w, 0.0, "step_w should be larger than 0.");
});
AddAttr<float>("step_h", AddAttr<float>("step_h",
"Prior boxes step across height, 0 for auto calculation.") "Prior boxes step across height, 0 for auto calculation.")
.SetDefault(0.0); .SetDefault(0.0)
.AddCustomChecker([](const float& step_h) {
PADDLE_ENFORCE_GT(step_h, 0.0, "step_h should be larger than 0.");
});
AddAttr<float>("offset", AddAttr<float>("offset",
"(float) " "(float) "
"Prior boxes center offset.") "Prior boxes center offset.")
......
...@@ -25,7 +25,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior, ...@@ -25,7 +25,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
std::vector<float>& output_aspect_ratior) { std::vector<float>& output_aspect_ratior) {
constexpr float epsilon = 1e-6; constexpr float epsilon = 1e-6;
output_aspect_ratior.clear(); output_aspect_ratior.clear();
output_aspect_ratior.push_back(1.); output_aspect_ratior.push_back(1.0f);
for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
float ar = input_aspect_ratior[i]; float ar = input_aspect_ratior[i];
bool already_exist = false; bool already_exist = false;
...@@ -38,7 +38,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior, ...@@ -38,7 +38,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
if (!already_exist) { if (!already_exist) {
output_aspect_ratior.push_back(ar); output_aspect_ratior.push_back(ar);
if (flip) { if (flip) {
output_aspect_ratior.push_back(1. / ar); output_aspect_ratior.push_back(1.0f / ar);
} }
} }
} }
...@@ -46,7 +46,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior, ...@@ -46,7 +46,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
template <typename T> template <typename T>
struct ClipFunctor { struct ClipFunctor {
HOSTDEVICE T operator()(T in) const { HOSTDEVICE inline T operator()(T in) const {
return std::min<T>(std::max<T>(in, 0.), 1.); return std::min<T>(std::max<T>(in, 0.), 1.);
} }
}; };
...@@ -97,6 +97,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> { ...@@ -97,6 +97,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
boxes->mutable_data<T>(ctx.GetPlace()); boxes->mutable_data<T>(ctx.GetPlace());
vars->mutable_data<T>(ctx.GetPlace()); vars->mutable_data<T>(ctx.GetPlace());
T inv_img_width = 1.0 / img_width;
T inv_img_height = 1.0 / img_height;
auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes); auto e_boxes = framework::EigenTensor<T, 4>::From(*boxes);
for (int h = 0; h < feature_height; ++h) { for (int h = 0; h < feature_height; ++h) {
for (int w = 0; w < feature_width; ++w) { for (int w = 0; w < feature_width; ++w) {
...@@ -109,13 +112,15 @@ class PriorBoxOpKernel : public framework::OpKernel<T> { ...@@ -109,13 +112,15 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
// first prior: aspect_ratio = 1, size = min_size // first prior: aspect_ratio = 1, size = min_size
box_width = box_height = min_size; box_width = box_height = min_size;
// xmin // xmin
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; e_boxes(h, w, idx, 0) = (center_x - box_width * 0.5) * inv_img_width;
// ymin // ymin
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; e_boxes(h, w, idx, 1) =
(center_y - box_height * 0.5) * inv_img_height;
// xmax // xmax
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; e_boxes(h, w, idx, 2) = (center_x + box_width * 0.5) * inv_img_width;
// ymax // ymax
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; e_boxes(h, w, idx, 3) =
(center_y + box_height * 0.5) * inv_img_height;
idx++; idx++;
if (max_sizes.size() > 0) { if (max_sizes.size() > 0) {
...@@ -124,13 +129,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> { ...@@ -124,13 +129,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
// size = sqrt(min_size * max_size) // size = sqrt(min_size * max_size)
box_width = box_height = sqrt(min_size * max_size); box_width = box_height = sqrt(min_size * max_size);
// xmin // xmin
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; e_boxes(h, w, idx, 0) =
(center_x - box_width * 0.5) * inv_img_width;
// ymin // ymin
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; e_boxes(h, w, idx, 1) =
(center_y - box_height * 0.5) * inv_img_height;
// xmax // xmax
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; e_boxes(h, w, idx, 2) =
(center_x + box_width * 0.5) * inv_img_width;
// ymax // ymax
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; e_boxes(h, w, idx, 3) =
(center_y + box_height * 0.5) * inv_img_height;
idx++; idx++;
} }
...@@ -143,13 +152,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> { ...@@ -143,13 +152,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
box_width = min_size * sqrt(ar); box_width = min_size * sqrt(ar);
box_height = min_size / sqrt(ar); box_height = min_size / sqrt(ar);
// xmin // xmin
e_boxes(h, w, idx, 0) = (center_x - box_width / 2.) / img_width; e_boxes(h, w, idx, 0) =
(center_x - box_width * 0.5) * inv_img_width;
// ymin // ymin
e_boxes(h, w, idx, 1) = (center_y - box_height / 2.) / img_height; e_boxes(h, w, idx, 1) =
(center_y - box_height * 0.5) * inv_img_height;
// xmax // xmax
e_boxes(h, w, idx, 2) = (center_x + box_width / 2.) / img_width; e_boxes(h, w, idx, 2) =
(center_x + box_width * 0.5) * inv_img_width;
// ymax // ymax
e_boxes(h, w, idx, 3) = (center_y + box_height / 2.) / img_height; e_boxes(h, w, idx, 3) =
(center_y + box_height * 0.5) * inv_img_height;
idx++; idx++;
} }
} }
......
...@@ -214,11 +214,20 @@ void BindVarDsec(py::module &m) { ...@@ -214,11 +214,20 @@ void BindVarDsec(py::module &m) {
py::return_value_policy::reference) py::return_value_policy::reference)
.def("set_name", &VarDesc::SetName) .def("set_name", &VarDesc::SetName)
.def("set_shape", &VarDesc::SetShape) .def("set_shape", &VarDesc::SetShape)
.def("set_shapes", &VarDesc::SetShapes)
.def("set_dtype", &VarDesc::SetDataType) .def("set_dtype", &VarDesc::SetDataType)
.def("shape", &VarDesc::Shape, py::return_value_policy::reference) .def("set_dtypes", &VarDesc::SetDataTypes)
.def("set_tensor_num", &VarDesc::SetTensorDescNum)
.def("tensor_num", &VarDesc::GetTensorDescNum)
.def("shape", &VarDesc::GetShape, py::return_value_policy::reference)
.def("shapes", &VarDesc::GetShapes, py::return_value_policy::reference)
.def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference) .def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference)
.def("dtypes", &VarDesc::GetDataTypes, py::return_value_policy::reference)
.def("lod_level", &VarDesc::GetLoDLevel) .def("lod_level", &VarDesc::GetLoDLevel)
.def("lod_levels", &VarDesc::GetLoDLevels,
py::return_value_policy::reference)
.def("set_lod_level", &VarDesc::SetLoDLevel) .def("set_lod_level", &VarDesc::SetLoDLevel)
.def("set_lod_levels", &VarDesc::SetLoDLevels)
.def("type", &VarDesc::GetType) .def("type", &VarDesc::GetType)
.def("set_type", &VarDesc::SetType) .def("set_type", &VarDesc::SetType)
.def("serialize_to_string", SerializeMessage<VarDesc>) .def("serialize_to_string", SerializeMessage<VarDesc>)
...@@ -233,7 +242,8 @@ void BindVarDsec(py::module &m) { ...@@ -233,7 +242,8 @@ void BindVarDsec(py::module &m) {
.value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES) .value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES)
.value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE) .value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE)
.value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY) .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY)
.value("PLACE_LIST", proto::VarDesc::PLACE_LIST); .value("PLACE_LIST", proto::VarDesc::PLACE_LIST)
.value("READER", proto::VarDesc::READER);
} }
void BindOpDesc(py::module &m) { void BindOpDesc(py::module &m) {
......
...@@ -117,7 +117,7 @@ EOF ...@@ -117,7 +117,7 @@ EOF
-DWITH_STYLE_CHECK=OFF -DWITH_STYLE_CHECK=OFF
make -j `nproc` gen_proto_py make -j `nproc` gen_proto_py
make -j `nproc` paddle_python make -j `nproc` paddle_python
make -j `nproc` paddle_docs paddle_docs_cn make -j `nproc` paddle_docs paddle_docs_cn paddle_api_docs
make -j `nproc` print_operators_doc make -j `nproc` print_operators_doc
paddle/pybind/print_operators_doc > doc/en/html/operators.json paddle/pybind/print_operators_doc > doc/en/html/operators.json
popd popd
......
...@@ -9,13 +9,14 @@ cd $TRAVIS_BUILD_DIR/build ...@@ -9,13 +9,14 @@ cd $TRAVIS_BUILD_DIR/build
cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON
make -j `nproc` gen_proto_py make -j `nproc` gen_proto_py
make -j `nproc` paddle_python make -j `nproc` paddle_python
make -j `nproc` paddle_docs paddle_docs_cn make -j `nproc` paddle_docs paddle_docs_cn paddle_api_docs
make -j `nproc` print_operators_doc make -j `nproc` print_operators_doc
paddle/pybind/print_operators_doc > doc/en/html/operators.json paddle/pybind/print_operators_doc > doc/en/html/operators.json
# check websites for broken links # check websites for broken links
linkchecker doc/en/html/index.html linkchecker doc/en/html/index.html
linkchecker doc/cn/html/index.html linkchecker doc/cn/html/index.html
linkchecker doc/api/en/html/index.html
# Parse Github URL # Parse Github URL
REPO=`git config remote.origin.url` REPO=`git config remote.origin.url`
...@@ -54,10 +55,11 @@ function deploy_docs() { ...@@ -54,10 +55,11 @@ function deploy_docs() {
mkdir -p ${DIR} mkdir -p ${DIR}
# remove old docs. mv new docs. # remove old docs. mv new docs.
set +e set +e
rm -rf ${DIR}/doc ${DIR}/doc_cn rm -rf ${DIR}/doc ${DIR}/doc_cn ${DIR}/api_doc
set -e set -e
cp -r ../doc/cn/html ${DIR}/doc_cn cp -r ../doc/cn/html ${DIR}/doc_cn
cp -r ../doc/en/html ${DIR}/doc cp -r ../doc/en/html ${DIR}/doc
cp -r ../doc/api/en/html ${DIR}/api_doc
git add . git add .
} }
......
...@@ -17,7 +17,9 @@ import contextlib ...@@ -17,7 +17,9 @@ import contextlib
from framework import Program, default_main_program from framework import Program, default_main_program
from . import core from . import core
__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope'] __all__ = [
'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var'
]
g_scope = core.Scope() g_scope = core.Scope()
...@@ -146,6 +148,35 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name): ...@@ -146,6 +148,35 @@ def has_fetch_operators(block, fetch_targets, fetch_holder_name):
return fetch_count > 0 return fetch_count > 0
def fetch_var(name, scope=None, return_numpy=True):
"""
Fetch the value of the variable with the given name from the given scope
Args:
name(str): name of the variable. Typically, only persistable variables
can be found in the scope used for running the program.
scope(core.Scope|None): scope object. It should be the scope where
you pass to Executor.run() when running your program.
If None, global_scope() will be used.
return_numpy(bool): whether convert the tensor to numpy.ndarray
Returns:
LodTensor|numpy.ndarray
"""
assert isinstance(name, str)
if scope is None:
scope = global_scope()
assert isinstance(scope, core.Scope)
var = global_scope().find_var(name)
assert var is not None, (
"Cannot find " + name + " in scope. Perhaps you need to make the"
" variable persistable by using var.persistable = True in your"
" program.")
tensor = var.get_tensor()
if return_numpy:
tensor = as_numpy(tensor)
return tensor
class Executor(object): class Executor(object):
def __init__(self, places): def __init__(self, places):
if not isinstance(places, list) and not isinstance(places, tuple): if not isinstance(places, list) and not isinstance(places, tuple):
......
...@@ -31,6 +31,7 @@ __all__ = [ ...@@ -31,6 +31,7 @@ __all__ = [
'program_guard', 'program_guard',
'switch_startup_program', 'switch_startup_program',
'switch_main_program', 'switch_main_program',
'get_var',
] ]
EMPTY_VAR_NAME = core.kEmptyVarName() EMPTY_VAR_NAME = core.kEmptyVarName()
...@@ -1123,3 +1124,22 @@ def program_guard(main_program, startup_program=None): ...@@ -1123,3 +1124,22 @@ def program_guard(main_program, startup_program=None):
switch_main_program(main_program) switch_main_program(main_program)
if startup_program is not None: if startup_program is not None:
switch_startup_program(startup_program) switch_startup_program(startup_program)
def get_var(name, program=None):
"""
Get a variable by name from the global block of a program
Args:
name(str): name of the variable
program(Program|None): program object.
If None, default_global_program() will be used.
Returns:
Variable
"""
if program is None:
program = default_main_program()
assert isinstance(name, str)
assert isinstance(name, Program)
return program.global_block().var(name)
...@@ -35,13 +35,15 @@ __all__ = [ ...@@ -35,13 +35,15 @@ __all__ = [
] ]
def create_tensor(dtype, name=None): def create_tensor(dtype, name=None, persistable=False):
helper = LayerHelper("create_tensor", **locals()) helper = LayerHelper("create_tensor", **locals())
return helper.create_variable(name=helper.name, dtype=dtype) return helper.create_variable(
name=helper.name, dtype=dtype, persistable=persistable)
def create_parameter(shape, def create_parameter(shape,
dtype, dtype,
name=None,
attr=None, attr=None,
is_bias=False, is_bias=False,
default_initializer=None): default_initializer=None):
...@@ -62,7 +64,7 @@ def create_parameter(shape, ...@@ -62,7 +64,7 @@ def create_parameter(shape,
""" """
helper = LayerHelper("create_parameter", **locals()) helper = LayerHelper("create_parameter", **locals())
if attr is None: if attr is None:
attr = ParamAttr() attr = ParamAttr(name=name)
return helper.create_parameter(attr, shape, dtype, is_bias, return helper.create_parameter(attr, shape, dtype, is_bias,
default_initializer) default_initializer)
......
...@@ -16,8 +16,9 @@ from __future__ import print_function ...@@ -16,8 +16,9 @@ from __future__ import print_function
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import unittest
import contextlib import contextlib
import numpy
import unittest
def resnet_cifar10(input, depth=32): def resnet_cifar10(input, depth=32):
...@@ -89,10 +90,7 @@ def vgg16_bn_drop(input): ...@@ -89,10 +90,7 @@ def vgg16_bn_drop(input):
return fc2 return fc2
def main(net_type, use_cuda): def train(net_type, use_cuda, save_dirname):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
classdim = 10 classdim = 10
data_shape = [3, 32, 32] data_shape = [3, 32, 32]
...@@ -111,12 +109,14 @@ def main(net_type, use_cuda): ...@@ -111,12 +109,14 @@ def main(net_type, use_cuda):
predict = fluid.layers.fc(input=net, size=classdim, act='softmax') predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost) avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=predict, label=label)
# Test program
test_program = fluid.default_main_program().clone()
optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(avg_cost) optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 128 BATCH_SIZE = 128
PASS_NUM = 1 PASS_NUM = 1
...@@ -125,6 +125,9 @@ def main(net_type, use_cuda): ...@@ -125,6 +125,9 @@ def main(net_type, use_cuda):
paddle.dataset.cifar.train10(), buf_size=128 * 10), paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE) batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place) exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
...@@ -132,18 +135,68 @@ def main(net_type, use_cuda): ...@@ -132,18 +135,68 @@ def main(net_type, use_cuda):
loss = 0.0 loss = 0.0
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
accuracy.reset(exe) for batch_id, data in enumerate(train_reader()):
for data in train_reader(): exe.run(feed=feeder.feed(data))
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data), if (batch_id % 10) == 0:
fetch_list=[avg_cost] + accuracy.metrics) acc_list = []
pass_acc = accuracy.eval(exe) avg_loss_list = []
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( for tid, test_data in enumerate(test_reader()):
pass_acc)) loss_t, acc_t = exe.run(program=test_program,
feed=feeder.feed(test_data),
fetch_list=[avg_cost, acc])
acc_list.append(float(acc_t))
avg_loss_list.append(float(loss_t))
break # Use 1 segment for speeding up CI
acc_value = numpy.array(acc_list).mean()
avg_loss_value = numpy.array(avg_loss_list).mean()
print(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1,
float(avg_loss_value), float(acc_value)))
if acc_value > 0.01: # Low threshold for speeding up CI
fluid.io.save_inference_model(save_dirname, ["pixel"],
[predict], exe)
return
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return return
raise AssertionError( place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
"Image classification loss is too large, {0:2.2}".format(loss)) exe = fluid.Executor(place)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D.
tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
print("infer results: ", results[0])
def main(net_type, use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "image_classification_" + net_type + ".inference.model"
train(net_type, use_cuda, save_dirname)
infer(use_cuda, save_dirname)
class TestImageClassification(unittest.TestCase): class TestImageClassification(unittest.TestCase):
......
...@@ -166,7 +166,9 @@ def infer(use_cuda, save_dirname=None): ...@@ -166,7 +166,9 @@ def infer(use_cuda, save_dirname=None):
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension of conv should be 4-D or 5-D. # The input's dimension of conv should be 4-D or 5-D.
tensor_img = numpy.random.rand(1, 1, 28, 28).astype("float32") # Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
tensor_img = numpy.random.uniform(-1.0, 1.0,
[1, 1, 28, 28]).astype("float32")
# Construct feed as a dictionary of {feed_target_name: feed_target_data} # Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets. # and results will contain a list of data corresponding to fetch_targets.
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as layers
import op_test
import numpy
import unittest
class TestFetchVar(op_test.OpTest):
def test_fetch_var(self):
val = numpy.array([1, 3, 5]).astype(numpy.int32)
x = layers.create_tensor(dtype="int32", persistable=True, name="x")
layers.assign(input=val, output=x)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_main_program(), feed={}, fetch_list=[])
fetched_x = fluid.fetch_var("x")
self.assertTrue(
numpy.array_equal(fetched_x, val),
"fetch_x=%s val=%s" % (fetched_x, val))
self.assertEqual(fetched_x.dtype, val.dtype)
if __name__ == '__main__':
unittest.main()
...@@ -115,6 +115,18 @@ class TestVarDesc(unittest.TestCase): ...@@ -115,6 +115,18 @@ class TestVarDesc(unittest.TestCase):
self.assertEqual(src_shape, res_shape) self.assertEqual(src_shape, res_shape)
self.assertEqual(core.VarDesc.VarType.SELECTED_ROWS, var.type()) self.assertEqual(core.VarDesc.VarType.SELECTED_ROWS, var.type())
def test_multiple_shape(self):
program_desc = core.ProgramDesc()
block = program_desc.block(0)
var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_shapes = [[2, 3, 3], [4, 5], [6, 7, 8, 9]]
var.set_shapes(src_shapes)
res_shapes = var.shapes()
self.assertEqual(src_shapes, res_shapes)
self.assertEqual(core.VarDesc.VarType.READER, var.type())
def test_dtype(self): def test_dtype(self):
program_desc = core.ProgramDesc() program_desc = core.ProgramDesc()
block = program_desc.block(0) block = program_desc.block(0)
...@@ -124,6 +136,30 @@ class TestVarDesc(unittest.TestCase): ...@@ -124,6 +136,30 @@ class TestVarDesc(unittest.TestCase):
self.assertEqual(core.DataType.INT32, var.dtype()) self.assertEqual(core.DataType.INT32, var.dtype())
self.assertEqual(core.VarDesc.VarType.LOD_TENSOR, var.type()) self.assertEqual(core.VarDesc.VarType.LOD_TENSOR, var.type())
def test_multiple_dtype(self):
program_desc = core.ProgramDesc()
block = program_desc.block(0)
var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_types = [
core.DataType.INT32, core.DataType.FP64, core.DataType.FP32
]
var.set_dtypes(src_types)
self.assertEqual(src_types, var.dtypes())
self.assertEqual(core.VarDesc.VarType.READER, var.type())
def test_multiple_lod_level(self):
program_desc = core.ProgramDesc()
block = program_desc.block(0)
var = block.var('my_reader')
var.set_type(core.VarDesc.VarType.READER)
var.set_tensor_num(3)
src_types = [3, 1, 2]
var.set_lod_levels(src_types)
self.assertEqual(src_types, var.lod_levels())
self.assertEqual(core.VarDesc.VarType.READER, var.type())
class TestBlockDesc(unittest.TestCase): class TestBlockDesc(unittest.TestCase):
def test_add_var(self): def test_add_var(self):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册