未验证 提交 07418f18 编写于 作者: G Guanghua Yu 提交者: GitHub

add Mobilenet_v3-SSDLite configs (#462)

* add mobilenet v3 configs

* fix some comment

* fix memsize
上级 f78c57b4
architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
save_dir: output
weights: output/ssdlite_mobilenet_v3_large/model_final
# 80(label_class) + 1(background)
num_classes: 81
SSD:
backbone: MobileNetV3
multi_box_head: SSDLiteMultiBoxHead
output_decoder:
background_label: 0
keep_top_k: 200
nms_eta: 1.0
nms_threshold: 0.45
nms_top_k: 400
score_threshold: 0.01
MobileNetV3:
scale: 1.0
model_name: large
extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
with_extra_blocks: true
conv_decay: 0.00004
SSDLiteMultiBoxHead:
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
base_size: 320
steps: [16, 32, 64, 107, 160, 320]
flip: true
clip: true
max_ratio: 95
min_ratio: 20
offset: 0.5
conv_decay: 0.00004
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_iters: 400000
- !LinearWarmup
start_factor: 0.33333
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
TrainReader:
inputs_def:
image_shape: [3, 320, 320]
fields: ['image', 'gt_bbox', 'gt_class']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_train2017.json
image_dir: train2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !RandomExpand
fill_value: [123.675, 116.28, 103.53]
- !RandomCrop
allow_no_crop: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 320
use_cv2: false
- !RandomFlipImage
is_normalized: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: true
batch_size: 64
shuffle: true
drop_last: true
# Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
worker_num: 8
# Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
memsize: 8G
# Buffer size for multi threads/processes.one instance in buffer is one batch data.
# To speed up, can be set to 64 or 128 etc.
bufsize: 32
use_process: true
EvalReader:
inputs_def:
image_shape: [3, 320, 320]
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 320
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 8
worker_num: 8
bufsize: 32
use_process: false
TestReader:
inputs_def:
image_shape: [3,320,320]
fields: ['image', 'im_id', 'im_shape']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: true
- !ResizeImage
interp: 1
max_size: 0
target_size: 320
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1
architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar
save_dir: output
weights: output/ssd_mobilenet_v3_small/model_final
# 80(label_class) + 1(background)
num_classes: 81
SSD:
backbone: MobileNetV3
multi_box_head: SSDLiteMultiBoxHead
output_decoder:
background_label: 0
keep_top_k: 200
nms_eta: 1.0
nms_threshold: 0.45
nms_top_k: 400
score_threshold: 0.01
MobileNetV3:
scale: 1.0
model_name: small
extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
with_extra_blocks: true
conv_decay: 0.00004
SSDLiteMultiBoxHead:
aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
base_size: 320
steps: [16, 32, 64, 107, 160, 320]
flip: true
clip: true
max_ratio: 95
min_ratio: 20
offset: 0.5
conv_decay: 0.00004
LearningRate:
base_lr: 0.4
schedulers:
- !CosineDecay
max_iters: 400000
- !LinearWarmup
start_factor: 0.33333
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
TrainReader:
inputs_def:
image_shape: [3, 320, 320]
fields: ['image', 'gt_bbox', 'gt_class']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_train2017.json
image_dir: train2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !RandomExpand
fill_value: [123.675, 116.28, 103.53]
- !RandomCrop
allow_no_crop: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 320
use_cv2: false
- !RandomFlipImage
is_normalized: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: true
batch_size: 64
shuffle: true
drop_last: true
# Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
worker_num: 8
# Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
memsize: 8G
# Buffer size for multi threads/processes.one instance in buffer is one batch data.
# To speed up, can be set to 64 or 128 etc.
bufsize: 32
use_process: true
EvalReader:
inputs_def:
image_shape: [3, 320, 320]
fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
dataset:
!COCODataSet
dataset_dir: dataset/coco
anno_path: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 320
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 8
worker_num: 8
bufsize: 32
use_process: false
TestReader:
inputs_def:
image_shape: [3,320,320]
fields: ['image', 'im_id', 'im_shape']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: true
- !ResizeImage
interp: 1
max_size: 0
target_size: 320
use_cv2: false
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1
...@@ -176,6 +176,15 @@ results of image size 608/416/320 above. Deformable conv is added on stage 5 of ...@@ -176,6 +176,15 @@ results of image size 608/416/320 above. Deformable conv is added on stage 5 of
**Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16. **Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
### SSDLite
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
| :------: | :--: | :-------: | :-----: | :------------: | :----: | :----------------------------------------------------------: |
| MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) |
| MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) |
**Notes:** MobileNet_v3-SSDLite is trained in 8 GPU with total batch size as 512 and uses cosine decay strategy to train.
### SSD ### SSD
| Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download | | Backbone | Size | Image/gpu | Lr schd | Inf time (fps) | Box AP | Download |
......
...@@ -129,9 +129,9 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型 ...@@ -129,9 +129,9 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
| MobileNet-V1 | ImageNet | 608 | 否 | 8 | 270e | 78.302 | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1 | ImageNet | 608 | 否 | 8 | 270e | 78.302 | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | ImageNet | 416 | 否 | 8 | 270e | - | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1 | ImageNet | 416 | 否 | 8 | 270e | - | 29.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | ImageNet | 320 | 否 | 8 | 270e | - | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) | | MobileNet-V1 | ImageNet | 320 | 否 | 8 | 270e | - | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | ImageNet | 608 | 否 | 8 | 270e | - | 31.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | | MobileNet-V3 | ImageNet | 608 | 否 | 8 | 270e | - | 31.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
| MobileNet-V1 | ImageNet | 416 | 否 | 8 | 270e | - | 29.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | | MobileNet-V3 | ImageNet | 416 | 否 | 8 | 270e | - | 29.9 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
| MobileNet-V1 | ImageNet | 320 | 否 | 8 | 270e | - | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) | | MobileNet-V3 | ImageNet | 320 | 否 | 8 | 270e | - | 27.1 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams) |
| ResNet34 | ImageNet | 608 | 否 | 8 | 270e | 63.356 | 36.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | ResNet34 | ImageNet | 608 | 否 | 8 | 270e | 63.356 | 36.2 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | ImageNet | 416 | 否 | 8 | 270e | - | 34.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | ResNet34 | ImageNet | 416 | 否 | 8 | 270e | - | 34.3 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34 | ImageNet | 320 | 否 | 8 | 270e | - | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) | | ResNet34 | ImageNet | 320 | 否 | 8 | 270e | - | 31.4 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
...@@ -168,6 +168,15 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型 ...@@ -168,6 +168,15 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
**注意事项:** RetinaNet系列模型中,在总batch size为16下情况下,初始学习率改为0.01。 **注意事项:** RetinaNet系列模型中,在总batch size为16下情况下,初始学习率改为0.01。
### SSDLite
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 |
| :----------: | :--: | :-----: | :-----: |:------------: |:----: | :-------: |
| MobileNet_v3 small | 320 | 64 | 40w | - | 16.6 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_small.tar) |
| MobileNet_v3 large | 320 | 64 | 40w | - | 22.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mobilenet_v3_ssdlite_large.tar) |
**注意事项:** MobileNet_v3-SSDLite 使用学习率余弦衰减策略在8卡GPU下总batch size为512。
### SSD ### SSD
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 | | 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略|推理时间(fps) | Box AP | 下载 |
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay from paddle.fluid.regularizer import L2Decay
...@@ -10,6 +24,19 @@ __all__ = ['MobileNetV3'] ...@@ -10,6 +24,19 @@ __all__ = ['MobileNetV3']
@register @register
class MobileNetV3(): class MobileNetV3():
"""
MobileNet v3, see https://arxiv.org/abs/1905.02244
Args:
scale (float): scaling factor for convolution groups proportion of mobilenet_v3.
model_name (str): There are two modes, small and large.
norm_type (str): normalization type, 'bn' and 'sync_bn' are supported.
norm_decay (float): weight decay for normalization layer weights.
conv_decay (float): weight decay for convolution layer weights.
with_extra_blocks (bool): if extra blocks should be added.
extra_block_filters (list): number of filter for each extra block.
"""
__shared__ = ['norm_type']
def __init__(self, def __init__(self,
scale=1.0, scale=1.0,
model_name='small', model_name='small',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册