map_utils.py 15.3 KB
Newer Older
K
Kaipeng Deng 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import os
Q
qingqing01 已提交
21 22
import sys
import numpy as np
23
import itertools
24 25
import paddle
from ppdet.modeling.bbox_utils import poly2rbox, rbox2poly_np
Q
qingqing01 已提交
26

K
Kaipeng Deng 已提交
27
from ppdet.utils.logger import setup_logger
Q
qingqing01 已提交
28 29
logger = setup_logger(__name__)

30
__all__ = [
G
George Ni 已提交
31 32 33 34 35 36 37
    'draw_pr_curve',
    'bbox_area',
    'jaccard_overlap',
    'prune_zero_padding',
    'DetectionMAP',
    'ap_per_class',
    'compute_ap',
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
]


def draw_pr_curve(precision,
                  recall,
                  iou=0.5,
                  out_dir='pr_curve',
                  file_name='precision_recall_curve.jpg'):
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    output_path = os.path.join(out_dir, file_name)
    try:
        import matplotlib.pyplot as plt
    except Exception as e:
        logger.error('Matplotlib not found, plaese install matplotlib.'
                     'for example: `pip install matplotlib`.')
        raise e
    plt.cla()
    plt.figure('P-R Curve')
    plt.title('Precision/Recall Curve(IoU={})'.format(iou))
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.grid(True)
    plt.plot(recall, precision)
    plt.savefig(output_path)
Q
qingqing01 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


def bbox_area(bbox, is_bbox_normalized):
    """
    Calculate area of a bounding box
    """
    norm = 1. - float(is_bbox_normalized)
    width = bbox[2] - bbox[0] + norm
    height = bbox[3] - bbox[1] + norm
    return width * height


def jaccard_overlap(pred, gt, is_bbox_normalized=False):
    """
    Calculate jaccard overlap ratio between two bounding box
    """
    if pred[0] >= gt[2] or pred[2] <= gt[0] or \
        pred[1] >= gt[3] or pred[3] <= gt[1]:
        return 0.
    inter_xmin = max(pred[0], gt[0])
    inter_ymin = max(pred[1], gt[1])
    inter_xmax = min(pred[2], gt[2])
    inter_ymax = min(pred[3], gt[3])
    inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax],
                           is_bbox_normalized)
    pred_size = bbox_area(pred, is_bbox_normalized)
    gt_size = bbox_area(gt, is_bbox_normalized)
    overlap = float(inter_size) / (pred_size + gt_size - inter_size)
    return overlap


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def calc_rbox_iou(pred, gt_rbox):
    """
    calc iou between rotated bbox
    """
    # calc iou of bounding box for speedup
    pred = np.array(pred, np.float32).reshape(-1, 8)
    pred = pred.reshape(-1, 2)
    gt_poly = rbox2poly_np(np.array(gt_rbox).reshape(-1, 5))[0]
    gt_poly = gt_poly.reshape(-1, 2)
    pred_rect = [
        np.min(pred[:, 0]), np.min(pred[:, 1]), np.max(pred[:, 0]),
        np.max(pred[:, 1])
    ]
    gt_rect = [
        np.min(gt_poly[:, 0]), np.min(gt_poly[:, 1]), np.max(gt_poly[:, 0]),
        np.max(gt_poly[:, 1])
    ]
    iou = jaccard_overlap(pred_rect, gt_rect, False)

    if iou <= 0:
        return iou

    # calc rbox iou
    pred = pred.reshape(-1, 8)

    pred = np.array(pred, np.float32).reshape(-1, 8)
    pred_rbox = poly2rbox(pred)
    pred_rbox = pred_rbox.reshape(-1, 5)
    pred_rbox = pred_rbox.reshape(-1, 5)
    try:
124
        from ext_op import rbox_iou
125
    except Exception as e:
126
        print("import custom_ops error, try install ext_op " \
127 128 129 130 131 132 133 134 135 136 137
                  "following ppdet/ext_op/README.md", e)
        sys.stdout.flush()
        sys.exit(-1)
    gt_rbox = np.array(gt_rbox, np.float32).reshape(-1, 5)
    pd_gt_rbox = paddle.to_tensor(gt_rbox, dtype='float32')
    pd_pred_rbox = paddle.to_tensor(pred_rbox, dtype='float32')
    iou = rbox_iou(pd_gt_rbox, pd_pred_rbox)
    iou = iou.numpy()
    return iou[0][0]


K
Kaipeng Deng 已提交
138 139 140
def prune_zero_padding(gt_box, gt_label, difficult=None):
    valid_cnt = 0
    for i in range(len(gt_box)):
W
wangxinxin08 已提交
141
        if (gt_box[i] == 0).all():
K
Kaipeng Deng 已提交
142 143 144 145 146 147
            break
        valid_cnt += 1
    return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt]
            if difficult is not None else None)


Q
qingqing01 已提交
148 149 150 151 152 153
class DetectionMAP(object):
    """
    Calculate detection mean average precision.
    Currently support two types: 11point and integral

    Args:
F
Feng Ni 已提交
154
        class_num (int): The class number.
Q
qingqing01 已提交
155 156 157 158
        overlap_thresh (float): The threshold of overlap
            ratio between prediction bounding box and 
            ground truth bounding box for deciding 
            true/false positive. Default 0.5.
F
Feng Ni 已提交
159
        map_type (str): Calculation method of mean average
Q
qingqing01 已提交
160 161
            precision, currently support '11point' and
            'integral'. Default '11point'.
F
Feng Ni 已提交
162
        is_bbox_normalized (bool): Whether bounding boxes
Q
qingqing01 已提交
163
            is normalized to range[0, 1]. Default False.
F
Feng Ni 已提交
164
        evaluate_difficult (bool): Whether to evaluate
Q
qingqing01 已提交
165
            difficult bounding boxes. Default False.
F
Feng Ni 已提交
166 167
        catid2name (dict): Mapping between category id and category name.
        classwise (bool): Whether per-category AP and draw
168
            P-R Curve or not.
Q
qingqing01 已提交
169 170 171 172 173 174 175
    """

    def __init__(self,
                 class_num,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
176 177 178
                 evaluate_difficult=False,
                 catid2name=None,
                 classwise=False):
Q
qingqing01 已提交
179 180 181 182 183 184 185 186
        self.class_num = class_num
        self.overlap_thresh = overlap_thresh
        assert map_type in ['11point', 'integral'], \
                "map_type currently only support '11point' "\
                "and 'integral'"
        self.map_type = map_type
        self.is_bbox_normalized = is_bbox_normalized
        self.evaluate_difficult = evaluate_difficult
187 188 189 190
        self.classwise = classwise
        self.classes = []
        for cname in catid2name.values():
            self.classes.append(cname)
Q
qingqing01 已提交
191 192
        self.reset()

193
    def update(self, bbox, score, label, gt_box, gt_label, difficult=None):
Q
qingqing01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207
        """
        Update metric statics from given prediction and ground
        truth infomations.
        """
        if difficult is None:
            difficult = np.zeros_like(gt_label)

        # record class gt count
        for gtl, diff in zip(gt_label, difficult):
            if self.evaluate_difficult or int(diff) == 0:
                self.class_gt_counts[int(np.array(gtl))] += 1

        # record class score positive
        visited = [False] * len(gt_label)
208
        for b, s, l in zip(bbox, score, label):
209
            pred = b.tolist() if isinstance(b, np.ndarray) else b
Q
qingqing01 已提交
210 211 212
            max_idx = -1
            max_overlap = -1.0
            for i, gl in enumerate(gt_label):
213
                if int(gl) == int(l):
214 215 216 217 218
                    if len(gt_box[i]) == 5:
                        overlap = calc_rbox_iou(pred, gt_box[i])
                    else:
                        overlap = jaccard_overlap(pred, gt_box[i],
                                                  self.is_bbox_normalized)
Q
qingqing01 已提交
219 220 221 222 223 224 225 226
                    if overlap > max_overlap:
                        max_overlap = overlap
                        max_idx = i

            if max_overlap > self.overlap_thresh:
                if self.evaluate_difficult or \
                        int(np.array(difficult[max_idx])) == 0:
                    if not visited[max_idx]:
227
                        self.class_score_poss[int(l)].append([s, 1.0])
Q
qingqing01 已提交
228 229
                        visited[max_idx] = True
                    else:
230
                        self.class_score_poss[int(l)].append([s, 0.0])
Q
qingqing01 已提交
231
            else:
232
                self.class_score_poss[int(l)].append([s, 0.0])
Q
qingqing01 已提交
233 234 235 236 237 238 239

    def reset(self):
        """
        Reset metric statics
        """
        self.class_score_poss = [[] for _ in range(self.class_num)]
        self.class_gt_counts = [0] * self.class_num
C
cnn 已提交
240
        self.mAP = 0.0
Q
qingqing01 已提交
241 242 243 244 245 246 247

    def accumulate(self):
        """
        Accumulate metric results and calculate mAP
        """
        mAP = 0.
        valid_cnt = 0
248
        eval_results = []
Q
qingqing01 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        for score_pos, count in zip(self.class_score_poss,
                                    self.class_gt_counts):
            if count == 0: continue
            if len(score_pos) == 0:
                valid_cnt += 1
                continue

            accum_tp_list, accum_fp_list = \
                    self._get_tp_fp_accum(score_pos)
            precision = []
            recall = []
            for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
                precision.append(float(ac_tp) / (ac_tp + ac_fp))
                recall.append(float(ac_tp) / count)

264
            one_class_ap = 0.0
Q
qingqing01 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
            if self.map_type == '11point':
                max_precisions = [0.] * 11
                start_idx = len(precision) - 1
                for j in range(10, -1, -1):
                    for i in range(start_idx, -1, -1):
                        if recall[i] < float(j) / 10.:
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
                        else:
                            if max_precisions[j] < precision[i]:
                                max_precisions[j] = precision[i]
278 279
                one_class_ap = sum(max_precisions) / 11.
                mAP += one_class_ap
Q
qingqing01 已提交
280 281 282 283 284 285 286
                valid_cnt += 1
            elif self.map_type == 'integral':
                import math
                prev_recall = 0.
                for i in range(len(precision)):
                    recall_gap = math.fabs(recall[i] - prev_recall)
                    if recall_gap > 1e-6:
287
                        one_class_ap += precision[i] * recall_gap
Q
qingqing01 已提交
288
                        prev_recall = recall[i]
289
                mAP += one_class_ap
Q
qingqing01 已提交
290 291 292 293
                valid_cnt += 1
            else:
                logger.error("Unspported mAP type {}".format(self.map_type))
                sys.exit(1)
294 295 296 297 298 299 300
            eval_results.append({
                'class': self.classes[valid_cnt - 1],
                'ap': one_class_ap,
                'precision': precision,
                'recall': recall,
            })
        self.eval_results = eval_results
Q
qingqing01 已提交
301 302 303 304 305 306 307 308
        self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP

    def get_map(self):
        """
        Get mAP result
        """
        if self.mAP is None:
            logger.error("mAP is not calculated.")
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if self.classwise:
            # Compute per-category AP and PR curve
            try:
                from terminaltables import AsciiTable
            except Exception as e:
                logger.error(
                    'terminaltables not found, plaese install terminaltables. '
                    'for example: `pip install terminaltables`.')
                raise e
            results_per_category = []
            for eval_result in self.eval_results:
                results_per_category.append(
                    (str(eval_result['class']),
                     '{:0.3f}'.format(float(eval_result['ap']))))
                draw_pr_curve(
                    eval_result['precision'],
                    eval_result['recall'],
                    out_dir='voc_pr_curve',
                    file_name='{}_precision_recall_curve.jpg'.format(
                        eval_result['class']))

            num_columns = min(6, len(results_per_category) * 2)
            results_flatten = list(itertools.chain(*results_per_category))
            headers = ['category', 'AP'] * (num_columns // 2)
W
wangxinxin08 已提交
333 334 335
            results_2d = itertools.zip_longest(* [
                results_flatten[i::num_columns] for i in range(num_columns)
            ])
336 337 338 339 340 341
            table_data = [headers]
            table_data += [result for result in results_2d]
            table = AsciiTable(table_data)
            logger.info('Per-category of VOC AP: \n{}'.format(table.table))
            logger.info(
                "per-category PR curve has output to voc_pr_curve folder.")
Q
qingqing01 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
        return self.mAP

    def _get_tp_fp_accum(self, score_pos_list):
        """
        Calculate accumulating true/false positive results from
        [score, pos] records
        """
        sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
        accum_tp = 0
        accum_fp = 0
        accum_tp_list = []
        accum_fp_list = []
        for (score, pos) in sorted_list:
            accum_tp += int(pos)
            accum_tp_list.append(accum_tp)
            accum_fp += 1 - int(pos)
            accum_fp_list.append(accum_fp)
        return accum_tp_list, accum_fp_list
G
George Ni 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443


def ap_per_class(tp, conf, pred_cls, target_cls):
    """
    Computes the average precision, given the recall and precision curves.
    Method originally from https://github.com/rafaelpadilla/Object-Detection-Metrics.
    
    Args:
        tp (list): True positives.
        conf (list): Objectness value from 0-1.
        pred_cls (list): Predicted object classes.
        target_cls (list): Target object classes.
    """
    tp, conf, pred_cls, target_cls = np.array(tp), np.array(conf), np.array(
        pred_cls), np.array(target_cls)

    # Sort by objectness
    i = np.argsort(-conf)
    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]

    # Find unique classes
    unique_classes = np.unique(np.concatenate((pred_cls, target_cls), 0))

    # Create Precision-Recall curve and compute AP for each class
    ap, p, r = [], [], []
    for c in unique_classes:
        i = pred_cls == c
        n_gt = sum(target_cls == c)  # Number of ground truth objects
        n_p = sum(i)  # Number of predicted objects

        if (n_p == 0) and (n_gt == 0):
            continue
        elif (n_p == 0) or (n_gt == 0):
            ap.append(0)
            r.append(0)
            p.append(0)
        else:
            # Accumulate FPs and TPs
            fpc = np.cumsum(1 - tp[i])
            tpc = np.cumsum(tp[i])

            # Recall
            recall_curve = tpc / (n_gt + 1e-16)
            r.append(tpc[-1] / (n_gt + 1e-16))

            # Precision
            precision_curve = tpc / (tpc + fpc)
            p.append(tpc[-1] / (tpc[-1] + fpc[-1]))

            # AP from recall-precision curve
            ap.append(compute_ap(recall_curve, precision_curve))

    return np.array(ap), unique_classes.astype('int32'), np.array(r), np.array(
        p)


def compute_ap(recall, precision):
    """
    Computes the average precision, given the recall and precision curves.
    Code originally from https://github.com/rbgirshick/py-faster-rcnn.
    
    Args:
        recall (list): The recall curve.
        precision (list): The precision curve.

    Returns:
        The average precision as computed in py-faster-rcnn.
    """
    # correct AP calculation
    # first append sentinel values at the end
    mrec = np.concatenate(([0.], recall, [1.]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap