tester_helper.h 17.2 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
28

L
luotao1 已提交
29
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
30
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
31 32 33
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
34
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
35
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
36
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
37
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
38
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
39 40
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
41
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
42 43
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
44
DEFINE_string(refer_result, "", "reference result for comparison");
L
luotao1 已提交
45 46 47 48
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
49 50
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
51 52
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
53
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
L
luotao1 已提交
54
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
L
luotao1 已提交
55

56
DECLARE_bool(profile);
L
luotao1 已提交
57
DECLARE_int32(paddle_num_threads);
58

L
luotao1 已提交
59 60 61
namespace paddle {
namespace inference {

62
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
63
  const auto *analysis_config =
64
      reinterpret_cast<const AnalysisConfig *>(config);
65
  if (use_analysis) {
66
    LOG(INFO) << *analysis_config;
67 68
    return;
  }
69
  LOG(INFO) << analysis_config->ToNativeConfig();
70
}
Y
Yan Chunwei 已提交
71

L
luotao1 已提交
72
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
73
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
74
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
75
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
76 77
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
78
    auto &ref_out = ref_outputs[i];
79 80
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
81
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
97
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
98 99 100
        }
        break;
      }
L
luotao1 已提交
101 102 103 104
    }
  }
}

105
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
106
    const PaddlePredictor::Config *config, bool use_analysis = true) {
107
  const auto *analysis_config =
108
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
109
  if (use_analysis) {
110
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
111
  }
112 113
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
114 115
}

116
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
117

118
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
119
                                                   int *num_ops) {
120
  std::unordered_map<std::string, int> res;
121
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
122 123 124 125 126 127
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
128 129 130 131
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
132 133
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
134 135 136 137
      ++num;
    }
  }
  *num_ops = num;
138
  return *fusion_status;
T
Tao Luo 已提交
139 140
}

T
Tao Luo 已提交
141
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
142 143
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
144
                       std::string params_filename = "params",
N
nhzlx 已提交
145 146
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
147 148
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
149 150 151 152 153 154 155 156 157 158 159
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), 1,
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
183 184
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
185
    }
T
Tao Luo 已提交
186 187 188 189
  }
  (*inputs).emplace_back(input_slots);
}

190 191 192 193 194 195 196 197 198 199 200 201
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
218

L
luotao1 已提交
219 220 221 222 223 224 225 226 227 228 229 230
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<PaddleTensor> *outputs, int num_threads,
                      int tid) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
231
    predictor->Run(inputs[0], outputs, batch_size);
L
luotao1 已提交
232 233
  } else {
    predictor->ZeroCopyRun();
234
  }
L
luotao1 已提交
235 236 237 238 239
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
240

L
luotao1 已提交
241 242 243 244 245 246 247 248 249
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<PaddleTensor> *outputs, int num_threads,
                   int tid) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
250
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
251
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
252
#endif
L
luotao1 已提交
253 254 255 256 257
  if (!FLAGS_zero_copy) {
    run_timer.tic();
    for (size_t i = 0; i < inputs.size(); i++) {
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], outputs, batch_size);
258
      }
L
luotao1 已提交
259
    }
L
luotao1 已提交
260 261 262 263 264 265 266 267 268 269 270
    elapsed_time = run_timer.toc();
  } else {
    for (size_t i = 0; i < inputs.size(); i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
    }
  }
Y
Yiqun Liu 已提交
271
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
272
  ProfilerStop();
Y
Yiqun Liu 已提交
273
#endif
N
nhzlx 已提交
274

L
luotao1 已提交
275 276 277 278 279 280 281 282
  PrintTime(batch_size, num_times, num_threads, tid, elapsed_time / num_times,
            inputs.size());
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(batch_size);
    benchmark.SetLatency(elapsed_time / num_times);
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
283 284 285
  }
}

L
luotao1 已提交
286 287 288 289 290 291 292 293 294
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<PaddleTensor> *outputs, bool use_analysis = true) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0);
  PredictionRun(predictor.get(), inputs, outputs, 1, 0);
}

L
luotao1 已提交
295
void TestMultiThreadPrediction(
296
    const PaddlePredictor::Config *config,
297
    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
298 299
    std::vector<PaddleTensor> *outputs, int num_threads,
    bool use_analysis = true) {
L
luotao1 已提交
300
  std::vector<std::thread> threads;
L
luotao1 已提交
301 302 303 304 305
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
306

L
luotao1 已提交
307 308 309 310 311
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<PaddleTensor> outputs_tid;
L
luotao1 已提交
312
      auto &predictor = predictors[tid];
L
luotao1 已提交
313 314 315
#ifdef PADDLE_WITH_MKLDNN
      if (use_analysis) {
        static_cast<AnalysisPredictor *>(predictor.get())
L
luotao1 已提交
316
            ->SetMkldnnThreadID(static_cast<int>(tid) + 1);
L
luotao1 已提交
317 318
      }
#endif
L
luotao1 已提交
319 320
      PredictionWarmUp(predictor.get(), inputs, outputs, num_threads, tid);
      PredictionRun(predictor.get(), inputs, outputs, num_threads, tid);
L
luotao1 已提交
321 322 323 324 325 326 327
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

328
void TestPrediction(const PaddlePredictor::Config *config,
329
                    const std::vector<std::vector<PaddleTensor>> &inputs,
T
Tao Luo 已提交
330 331
                    std::vector<PaddleTensor> *outputs, int num_threads,
                    bool use_analysis = FLAGS_use_analysis) {
332
  PrintConfig(config, use_analysis);
L
luotao1 已提交
333
  if (num_threads == 1) {
T
Tao Luo 已提交
334
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
335
  } else {
T
Tao Luo 已提交
336 337
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
338 339 340
  }
}

L
luotao1 已提交
341 342 343 344 345 346 347 348 349
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
350 351 352 353
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
354 355 356 357 358 359
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
360
void CompareNativeAndAnalysis(
361
    const PaddlePredictor::Config *config,
362
    const std::vector<std::vector<PaddleTensor>> &inputs) {
363
  PrintConfig(config, true);
T
Tao Luo 已提交
364
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
365
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
366 367 368 369
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  CompareResult(analysis_outputs, native_outputs);
}

N
nhzlx 已提交
370 371 372 373 374 375 376 377 378 379
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

L
luotao1 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), 1,
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
Y
Yu Yang 已提交
461
    if (a.type() == framework::proto::VarType::FP32) {
L
luotao1 已提交
462 463 464 465 466 467 468 469
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
Y
Yu Yang 已提交
470
    } else if (a.type() == framework::proto::VarType::INT64) {
L
luotao1 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
502 503
}  // namespace inference
}  // namespace paddle