jit_kernel_test.cc 19.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17
#include <cmath>    // for exp
T
tensor-tang 已提交
18
#include <cstring>  // for memcpy
T
tensor-tang 已提交
19 20 21 22 23 24
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
25 26 27 28 29 30 31 32
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
33 34
constexpr int repeat = 20000;

T
tensor-tang 已提交
35 36 37 38 39 40 41
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
T
tensor-tang 已提交
42 43
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
T
tensor-tang 已提交
44 45 46 47 48 49 50 51
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
void vrelu_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] > 0.f ? x[i] : 0.f;
  }
}

#if defined __AVX__ || defined __AVX2__
void vrelu_intri8(const int n, const float* x, float* y) {
  __m256 tmp = _mm256_loadu_ps(x);
  tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());
  _mm256_storeu_ps(y, tmp);
}
#endif

TEST(JitKernel, vrelu) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -10.f, 1.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VReluKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vrelu_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vrelu_intri8(d, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(x_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void vaddbias_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = x[i] + a;
  }
}

TEST(JitKernel, vaddbias) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float a = 2.f;
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vaddbias_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
130
      ker->Compute(a, x_data, ztgt_data);
T
tensor-tang 已提交
131 132 133 134 135 136 137 138 139 140 141
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
void vexp_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

#ifdef PADDLE_WITH_MKLML
void vexp_mkl(const int n, const float* x, float* y) {
  paddle::platform::dynload::vsExp(n, x, y);
}
#endif

TEST(JitKernel, vexp) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
156
  for (int d : {7, 8, 15, 16, 30, 128, 256}) {
T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vexp_mkl(d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
181
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
182 183 184 185 186 187 188 189 190 191 192 193
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    }
  }
}

inline float _sigmoid(float x) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  float tmp = (x < min) ? min : ((x > max) ? max : x);
  return 1.f / (1.f + std::exp(-tmp));
}

void vsigmoid_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _sigmoid(x[i]);
  }
}

void vsigmoid_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
    const int n, const float* x, float* y) {
  const float min = SIGMOID_THRESHOLD_MIN;
  const float max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = 0.f - y[i];
  }
T
tensor-tang 已提交
221
  vexp->Compute(y, y);
222 223 224 225 226 227 228
  for (int i = 0; i < n; ++i) {
    y[i] = 1.f / (1.f + y[i]);
  }
}

TEST(JitKernel, vsigmoid) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
229
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vexp =
        jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_better(vexp, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vsigmoid_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
252
      ker->Compute(x_data, ztgt_data);
253 254 255
    }
    auto ttgte = GetCurrentUS();

T
tensor-tang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

inline float _tanh(float x) { return 2.f * _sigmoid(2.f * x) - 1.f; }

void vtanh_ref(const int n, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = _tanh(x[i]);
  }
}

void vtanh_better(
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VScalKernel<float>>& vscal,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VSigmoidKernel<float>>&
        vsigmoid,
    const std::shared_ptr<
        const paddle::operators::math::jitkernel::VAddBiasKernel<float>>&
        vaddbias,
    const int n, const float* x, float* y) {
T
tensor-tang 已提交
283
  vscal->Compute(2.f, x, y);
T
tensor-tang 已提交
284
  vsigmoid->Compute(y, y);
T
tensor-tang 已提交
285 286
  vscal->Compute(2.f, y);
  vaddbias->Compute(-1.f, y, y);
T
tensor-tang 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
}

TEST(JitKernel, vtanh) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 32, 64, 100, 128, 256}) {
    std::vector<float> x(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data(), -2.f, 2.f);
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VTanhKernel<float>>(d);
    const auto& vscal =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const auto& vsigmoid =
        jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
    const auto& vaddbias =
        jit::KernelPool::Instance().template Get<jit::VAddBiasKernel<float>>(d);
    const float* x_data = x.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_better(vscal, vsigmoid, vaddbias, d, x_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vtanh_ref(d, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
318
      ker->Compute(x_data, ztgt_data);
T
tensor-tang 已提交
319 320 321
    }
    auto ttgte = GetCurrentUS();

322 323 324 325 326
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
            << " us, tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
T
tensor-tang 已提交
327 328 329 330
    }
  }
}

T
tensor-tang 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
void vscal_ref(const int n, const float a, const float* x, float* y) {
  for (int i = 0; i < n; ++i) {
    y[i] = a * x[i];
  }
}
void vscal_inp_ref(const int n, const float a, float* x) {
  for (int i = 0; i < n; ++i) {
    x[i] = a * x[i];
  }
}
#if defined __AVX__ || defined __AVX2__
void vscal_intri8(const int n, const float a, const float* x, float* y) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(y, tmp);
}
void vscal_inp_intri8(const int n, const float a, float* x) {
  __m256 tmp;
  __m256 scalar = _mm256_set1_ps(a);
  tmp = _mm256_loadu_ps(x);
  tmp = _mm256_mul_ps(tmp, scalar);
  _mm256_storeu_ps(x, tmp);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vscal_inp_mkl(const int n, const float a, float* x) {
  paddle::platform::dynload::cblas_sscal(n, a, x, 1);
}
#endif

TEST(JitKernel, vscal) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    std::memcpy(y.data(), x.data(), sizeof(float) * d);
    float a = 2.f;
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VScalKernel<float>>(d);
    const float* x_data = x.data();
    float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_ref(d, a, x_data, zref_data);
    }
    auto trefe = GetCurrentUS();
    auto trefs1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_ref(d, a, y_data);
    }
    auto trefe1 = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vscal_inp_mkl(d, a, y_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_intri8(d, a, x_data, zref_data);
      }
      auto si1 = GetCurrentUS();
      auto si2 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vscal_inp_intri8(d, a, y_data);
      }
      auto si3 = GetCurrentUS();
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat
              << " us, inplace: " << (si3 - si2) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
416
      ker->Compute(a, x_data, ztgt_data);
T
tensor-tang 已提交
417 418 419 420
    }
    auto ttgte = GetCurrentUS();
    auto ttgts1 = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
421
      ker->Compute(a, y_data);
T
tensor-tang 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    }
    auto ttgte1 = GetCurrentUS();
    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
            << " us, inplace takes: " << (trefe1 - trefs1) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl inplace takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat
            << "us, tgt inplace takes: " << (ttgte1 - ttgts1) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}
T
tensor-tang 已提交
438

T
tensor-tang 已提交
439 440 441 442 443 444
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
445
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
446
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
447 448 449 450 451 452 453
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
454

T
tensor-tang 已提交
455 456 457
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
458
}
T
tensor-tang 已提交
459
#endif
T
tensor-tang 已提交
460

T
tensor-tang 已提交
461 462
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
463
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
464 465 466 467 468 469 470 471 472 473
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
474
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
475
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
476
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
477
    }
T
tensor-tang 已提交
478
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
479

T
tensor-tang 已提交
480 481
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
482
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
483
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
484
    }
T
tensor-tang 已提交
485 486
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
487

T
tensor-tang 已提交
488 489 490 491
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
492
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
493 494
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
495 496 497 498 499 500
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
501
      ker->Compute(x_data, y_data, ztgt_data);
T
tensor-tang 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vadd_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
574 575 576 577
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
578 579
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
580
      ker->Compute(x_data, y_data, ztgt_data);
T
tensor-tang 已提交
581 582 583 584
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
585
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
586
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
587
#else
T
tensor-tang 已提交
588
            << " us, "
T
tensor-tang 已提交
589
#endif
T
tensor-tang 已提交
590
            << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
591 592 593 594 595 596
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
597 598 599 600
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
601
  const auto& plstm1 =
T
tensor-tang 已提交
602 603 604 605
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
606
  const auto& plstm2 =
T
tensor-tang 已提交
607 608 609 610
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
611
  EXPECT_EQ(plstm1, plstm2);
T
tensor-tang 已提交
612

T
tensor-tang 已提交
613
  const auto& pvmul_f =
T
tensor-tang 已提交
614
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
615 616
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
617

T
tensor-tang 已提交
618
  const auto& pvmul_d =
T
tensor-tang 已提交
619
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
620 621
  EXPECT_TRUE(std::dynamic_pointer_cast<const jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<const jit::Kernel>(pvmul_d));
T
tensor-tang 已提交
622 623

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
T
tensor-tang 已提交
624
  EXPECT_EQ(pvmul_f, pvmul_from_key);
T
tensor-tang 已提交
625 626
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
627
}