picodet_s_192_pedestrian.yml 3.1 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6
use_gpu: true
log_iter: 20
save_dir: output
snapshot_epoch: 1
print_flops: false
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x0_75_pretrained.pdparams
7
weights: output/picodet_s_192_pedestrian/model_final
J
JYChen 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
find_unused_parameters: True
use_ema: true
cycle_epoch: 40
snapshot_epoch: 10
epoch: 300
metric: COCO
num_classes: 1

architecture: PicoDet

PicoDet:
  backbone: ESNet
  neck: CSPPAN
  head: PicoHead

ESNet:
  scale: 0.75
  feature_maps: [4, 11, 14]
  act: hard_swish
  channel_ratio: [0.875, 0.5, 0.5, 0.5, 0.625, 0.5, 0.625, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

CSPPAN:
  out_channels: 96
  use_depthwise: True
  num_csp_blocks: 1
  num_features: 4

PicoHead:
  conv_feat:
    name: PicoFeat
    feat_in: 96
    feat_out: 96
    num_convs: 2
    num_fpn_stride: 4
    norm_type: bn
    share_cls_reg: True
  fpn_stride: [8, 16, 32, 64]
  feat_in_chan: 96
  prior_prob: 0.01
  reg_max: 7
  cell_offset: 0.5
  loss_class:
    name: VarifocalLoss
    use_sigmoid: True
    iou_weighted: True
    loss_weight: 1.0
  loss_dfl:
    name: DistributionFocalLoss
    loss_weight: 0.25
  loss_bbox:
    name: GIoULoss
    loss_weight: 2.0
  assigner:
    name: SimOTAAssigner
    candidate_topk: 10
    iou_weight: 6
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6

LearningRate:
  base_lr: 0.4
  schedulers:
  - !CosineDecay
    max_epochs: 300
  - !LinearWarmup
    start_factor: 0.1
    steps: 300

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.00004
    type: L2

TrainDataset:
  !COCODataSet
    image_dir: ""
    anno_path: aic_coco_train_cocoformat.json
    dataset_dir: dataset
    data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']

EvalDataset:
  !COCODataSet
    image_dir: val2017
    anno_path: annotations/instances_val2017.json
    dataset_dir: dataset/coco

TestDataset:
  !ImageFolder
    anno_path: annotations/instances_val2017.json

worker_num: 8
TrainReader:
  sample_transforms:
  - Decode: {}
  - RandomCrop: {}
  - RandomFlip: {prob: 0.5}
  - RandomDistort: {}
  batch_transforms:
113
  - BatchRandomResize: {target_size: [128, 160, 192, 224, 256], random_size: True, random_interp: True, keep_ratio: False}
J
JYChen 已提交
114 115 116 117 118 119 120 121 122 123
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_size: 128
  shuffle: true
  drop_last: true
  collate_batch: false

EvalReader:
  sample_transforms:
  - Decode: {}
124
  - Resize: {interp: 2, target_size: [192, 192], keep_ratio: False}
J
JYChen 已提交
125 126 127 128 129 130 131 132 133
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 8
  shuffle: false

TestReader:
  inputs_def:
134
    image_shape: [1, 3, 192, 192]
J
JYChen 已提交
135 136
  sample_transforms:
  - Decode: {}
137
  - Resize: {interp: 2, target_size: [192, 192], keep_ratio: False}
J
JYChen 已提交
138 139 140 141 142 143
  - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
  - Permute: {}
  batch_transforms:
  - PadBatch: {pad_to_stride: 32}
  batch_size: 1
  shuffle: false
144
  fuse_normalize: true