nn.py 393.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26 27
from ..framework import Variable, OpProtoHolder, _in_dygraph_mode
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
194
    'fsp_matrix',
Y
Yu Yang 已提交
195 196
]

J
jerrywgz 已提交
197 198
kIgnoreIndex = -100

Y
Yu Yang 已提交
199 200 201 202 203 204 205

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
206
       is_test=False,
207
       name=None):
Y
Yu Yang 已提交
208
    """
209
    **Fully Connected Layer**
Y
Yu Yang 已提交
210

211
    This function creates a fully connected layer in the network. It can take
212
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
213
    Args in detail). It creates a variable called weights for each input tensor,
214 215 216 217
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
218
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
219 220
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
221

222
    When the input is single tensor:
C
caoying03 已提交
223

224 225 226 227 228
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
229 230 231

    .. math::

232
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
233 234 235

    In the above equation:

236 237 238
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
239
    * :math:`b`: The bias parameter created by this layer (if needed).
240
    * :math:`Act`: The activation function.
C
caoying03 已提交
241
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
261
    Args:
R
ranqiu 已提交
262 263 264 265 266 267 268 269 270 271
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
272
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
273 274 275 276
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
277 278
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
279
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
280
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
281
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
282

283
    Returns:
F
fengjiayi 已提交
284
        Variable: The transformation result.
285 286

    Raises:
C
caoying03 已提交
287
        ValueError: If rank of the input tensor is less than 2.
288 289 290 291

    Examples:
        .. code-block:: python

292
          # when input is single tensor
F
fengjiayi 已提交
293
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
294
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
295 296 297 298 299

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
300
    """
C
caoying03 已提交
301
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
302 303 304 305

    dtype = helper.input_dtype()

    mul_results = []
306 307
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
308 309 310
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
311

Y
Yu Yang 已提交
312
        w = helper.create_parameter(
313
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
314
        tmp = helper.create_variable_for_type_inference(dtype)
315
        helper.append_op(
316 317 318
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
319
            outputs={"Out": tmp},
M
mozga-intel 已提交
320 321
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
322 323 324 325
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
326
    else:
X
Xin Pan 已提交
327
        pre_bias = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
332
            attrs={"use_mkldnn": False})
333 334 335 336
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
337 338


339 340 341
def embedding(input,
              size,
              is_sparse=False,
342
              is_distributed=False,
343 344 345
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
346
    """
347 348
    **Embedding Layer**

349
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
350 351
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
352 353 354

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
355 356

    Args:
357 358 359 360 361
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
362
        is_distributed(bool): Whether to run lookup table from remote parameter server.
363 364
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
365
            with zeros whenever lookup encounters it in :attr:`input`. If
366
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
367 368
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
369
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
370

371 372 373
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
374

375 376
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
377

C
chengduoZH 已提交
378
          dict_size = len(dataset.ids)
379
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
380
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
381 382 383
    """

    helper = LayerHelper('embedding', **locals())
384
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
385 386
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
387 388
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
389
    tmp = helper.create_variable_for_type_inference(dtype)
390 391
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
392 393 394 395 396
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
397 398 399
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
400
            'remote_prefetch': remote_prefetch,
401 402
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
403 404 405
    return tmp


W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
422

W
wopeizl 已提交
423 424 425 426 427 428 429 430 431 432 433
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
434

W
wopeizl 已提交
435 436 437 438
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
483 484
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
528 529


P
phlrain 已提交
530 531 532 533 534 535
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
536
         dropout_prob=0.0,
P
phlrain 已提交
537 538 539 540 541
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
542
    """
P
phlrain 已提交
543
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
544 545

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
546
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
547 548
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
549
    .. math::
M
minqiyang 已提交
550 551 552 553 554 555 556

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
557
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
558 559 560 561

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
562 563

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
564 565 566 567 568 569
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
570 571 572
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
573
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
574

M
minqiyang 已提交
575
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
576 577 578 579 580
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
581
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
582 583 584 585 586
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
587
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
588 589
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
590 591
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
592 593 594 595 596 597
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
598
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
599

L
liuhongyu 已提交
600 601

    Returns:
M
minqiyang 已提交
602 603
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
604
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
605

H
haowang101779990 已提交
606 607 608 609
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
610
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
611 612
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
613
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
629
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
630 631 632 633 634 635
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
636 637 638
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
698 699 700 701 702 703 704 705 706 707
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
708
                  proj_activation='tanh',
709
                  dtype='float32',
X
xuezhong 已提交
710 711 712 713 714
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
715 716 717
    """
    **Dynamic LSTMP Layer**

718 719 720 721 722 723
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
724 725 726 727 728

    The formula is as follows:

    .. math::

729
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
730

731
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
732

733
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
734

735
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
736

737
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
738

739
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
740

741
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
742

Y
Yibing Liu 已提交
743 744 745 746 747 748
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
749
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
750
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
751
          bias vector).
Y
Yibing Liu 已提交
752 753 754
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
755
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
756
    * :math:`h`: The hidden state.
757
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
758 759
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
760
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
761
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
762
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
763 764
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
765 766 767 768

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
769

Y
Yibing Liu 已提交
770 771 772 773 774 775 776 777 778 779 780 781
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
782
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
783 784
                               hidden-hidden weight and projection weight.

785 786
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
787 788
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
789 790
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
791
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
792 793 794 795 796

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
797
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
798 799 800 801 802 803
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
804
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
805 806 807
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
808
                                - The shape is (1 x 7D).
C
chengduo 已提交
809 810 811 812 813

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
814 815 816 817 818 819 820 821 822
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
823
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
824 825
                              default "tanh".
        proj_activation(str): The activation for projection output.
826
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
827
                              default "tanh".
Y
Yibing Liu 已提交
828
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
829 830
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
831 832 833 834 835 836 837 838 839 840 841
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
842 843

    Returns:
844 845 846 847
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
848 849

    Examples:
850

Y
Yibing Liu 已提交
851 852
        .. code-block:: python

853 854 855 856
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
857
            hidden_dim, proj_dim = 512, 256
858
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
859
                                     act=None, bias_attr=None)
860 861 862
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
863 864 865 866
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
867
    """
868

869 870 871
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
872
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
873
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
874
    size = size // 4
Y
Yibing Liu 已提交
875 876 877 878 879 880 881 882 883 884
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
885 886 887 888 889 890
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
906

X
xuezhong 已提交
907 908 909 910 911
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
912 913
    helper.append_op(
        type='lstmp',
914
        inputs=inputs,
Y
Yibing Liu 已提交
915 916 917 918 919 920 921 922 923
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
924 925
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
926 927 928 929 930 931 932 933 934
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
935 936 937 938 939 940 941
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
942 943
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
944
    """
945
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
946

947 948 949
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
950

G
guosheng 已提交
951 952 953 954 955 956 957 958 959
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
960

G
guosheng 已提交
961
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
962

Q
Qiao Longfei 已提交
963 964 965

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
966 967 968 969 970 971 972 973 974 975 976 977
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
978
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
979 980
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
981 982 983 984
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
985
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
986 987

    Args:
988 989
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
990
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
991
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
992 993
            is the hidden size.
        size(int): The dimension of the gru cell.
994
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
995 996
            hidden-hidden weight matrix. Note:

997
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
998
              :math:`D` is the hidden size.
999
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1000
              The first part are weights of the update gate and reset gate with
1001
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1002
              candidate hidden state with shape :math:`(D \\times D)`.
1003 1004 1005 1006 1007

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1008
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1009
            the bias in the update gate, reset gate and candidate calculations.
1010 1011 1012
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1013 1014
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1015
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1016 1017 1018
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1019
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1020
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1021 1022 1023 1024
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1025 1026

    Returns:
G
guosheng 已提交
1027
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1028
            and sequence length is the same with the input.
1029

G
guosheng 已提交
1030
    Examples:
1031

G
guosheng 已提交
1032 1033
        .. code-block:: python

1034 1035 1036 1037
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1038
            hidden_dim = 512
1039
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1040
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1041 1042
    """

1043 1044 1045
    assert _in_dygraph_mode(
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1046 1047 1048 1049 1050 1051 1052
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1053
    batch_size = input.shape[0]
G
guosheng 已提交
1054
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1055
    if h_0:
G
guosheng 已提交
1056
        assert h_0.shape == (
Y
Yancey 已提交
1057 1058 1059
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1060

X
Xin Pan 已提交
1061 1062 1063 1064
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1078 1079
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1080 1081 1082 1083
        })
    return hidden


Y
Yu Yang 已提交
1084 1085 1086
def gru_unit(input,
             hidden,
             size,
1087 1088
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1089
             activation='tanh',
Q
Qiao Longfei 已提交
1090 1091
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1092
    """
1093 1094 1095
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1096
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1097
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1098

1099 1100
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1101

1102
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1103

1104
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1105

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1121 1122

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1123 1124 1125
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1126 1127
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1128 1129
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1130 1131 1132
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1133 1134 1135

    Args:
        input (Variable): The fc transformed input value of current step.
1136
        hidden (Variable): The hidden value of gru unit from previous step.
1137
        size (integer): The input dimension value.
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1152
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1153
            the bias in the update gate, reset gate and candidate calculations.
1154 1155 1156
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1157 1158
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1159 1160 1161 1162
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1163

1164 1165 1166 1167 1168 1169
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1170

1171
             # assuming we have x_t_data and prev_hidden of size=10
1172
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1173 1174
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1187
    size = size // 3
Y
Yu Yang 已提交
1188 1189

    # create weight
1190 1191
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1192

X
Xin Pan 已提交
1193 1194 1195
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1196
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1197
    # create bias
1198
    if helper.bias_attr:
Y
Yu Yang 已提交
1199 1200 1201
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1202
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1203 1204 1205

    helper.append_op(
        type='gru_unit',
1206
        inputs=inputs,
Y
Yu Yang 已提交
1207 1208 1209 1210 1211 1212
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1213 1214
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1215 1216 1217 1218 1219
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1220
@templatedoc()
1221
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1222 1223 1224 1225 1226 1227 1228
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1229
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1230 1231 1232 1233
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1234 1235 1236
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1237 1238

    """
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1245 1246 1247 1248 1249 1250 1251 1252
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1268 1269 1270 1271
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1272

W
wopeizl 已提交
1273 1274
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1275

W
wopeizl 已提交
1276
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1277

W
wopeizl 已提交
1278
        label(${label_type}): ${label_comment}
1279

W
wopeizl 已提交
1280 1281
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1282

W
wopeizl 已提交
1283 1284
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1285

W
wopeizl 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1296
                "Transition": transition,
W
wopeizl 已提交
1297 1298
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1299

W
wopeizl 已提交
1300
    return viterbi_path
Y
Yu Yang 已提交
1301 1302


Y
yi.wu 已提交
1303
@templatedoc()
F
fengjiayi 已提交
1304
def cos_sim(X, Y):
Y
Yu Yang 已提交
1305
    """
Y
yi.wu 已提交
1306 1307 1308
    ${comment}

    Args:
1309 1310
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1311

Y
yi.wu 已提交
1312
    Returns:
1313
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1314
    """
F
fengjiayi 已提交
1315
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1316 1317 1318
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1329 1330 1331 1332 1333
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1334
            dropout_implementation="downgrade_in_infer"):
1335 1336 1337 1338 1339
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1340
    training. The dropout operator randomly sets (according to the given dropout
1341 1342 1343
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1344 1345
    dropout op can be removed from the program to make the program more efficient.

1346
    Args:
1347 1348
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1349 1350 1351 1352 1353 1354 1355
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1356 1357
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1358
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1359 1360

                                           - train: out = input * mask
C
ceci3 已提交
1361
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1362 1363 1364

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1365
                                        2. upscale_in_train, upscale the outcome at training time
1366

H
haowang101779990 已提交
1367 1368
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1369

H
haowang101779990 已提交
1370 1371
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1372

M
minqiyang 已提交
1373

1374
    Returns:
1375
        Variable: A tensor variable is the shape with `x`.
1376 1377

    Examples:
1378

1379 1380
        .. code-block:: python

1381 1382
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1383 1384
    """

F
fengjiayi 已提交
1385
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1386 1387 1388
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1389 1390 1391 1392

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1393 1394 1395 1396 1397
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1398 1399 1400 1401
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1402 1403
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1404
        })
1405 1406 1407
    return out


J
jerrywgz 已提交
1408
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1409
    """
Y
Yibing Liu 已提交
1410 1411
    **Cross Entropy Layer**

1412 1413 1414
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1415 1416

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1417
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1418

Y
Yibing Liu 已提交
1419
        .. math::
Y
yangyaming 已提交
1420

Y
Yibing Liu 已提交
1421 1422 1423
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1424 1425
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1426 1427 1428 1429 1430

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1431
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1432 1433 1434
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1435 1436
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1437
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1438

Y
Yibing Liu 已提交
1439
    Args:
Y
yangyaming 已提交
1440
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1441 1442 1443 1444
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1445
        label (Variable|list): the ground truth which is a 2-D tensor. When
1446 1447 1448 1449
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1450
        soft_label (bool): a flag indicating whether to
1451
                                           interpretate the given labels as soft
1452
                                           labels. Default: `False`.
M
minqiyang 已提交
1453 1454
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1455
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1456 1457 1458 1459 1460

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1461 1462 1463
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1464

H
haowang101779990 已提交
1465 1466
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1467

H
haowang101779990 已提交
1468 1469
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1470 1471 1472 1473 1474 1475

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1476
    """
S
sneaxiy 已提交
1477 1478
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1479
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1480
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1481 1482 1483 1484 1485
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1486 1487
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1488 1489 1490
    return out


S
sneaxiy 已提交
1491 1492 1493 1494
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1495
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1496 1497 1498 1499 1500
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1501
                 'MatchX': [match_x],
S
sneaxiy 已提交
1502 1503 1504 1505 1506
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1507
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1508 1509 1510
    """
    Bayesian Personalized Ranking Loss Operator.

1511
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1512 1513 1514 1515 1516 1517
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1518 1519 1520 1521 1522 1523
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1524 1525
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1526 1527 1528
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1529 1530 1531
    Examples:
        .. code-block:: python

1532
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1533
    """
1534 1535 1536 1537 1538 1539

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1540
                'Label': [label]},
1541 1542 1543 1544
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1545
def square_error_cost(input, label):
Y
Yu Yang 已提交
1546
    """
1547 1548
    **Square error cost layer**

1549 1550
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1565 1566
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1567 1568

    Returns:
G
guosheng 已提交
1569
        Variable: The tensor variable storing the element-wise squared error \
1570
                  difference of input and label.
1571 1572 1573 1574 1575 1576 1577 1578

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1579
    """
F
fengjiayi 已提交
1580
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1581
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1582 1583 1584 1585 1586 1587
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1588
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1589
    helper.append_op(
F
fengjiayi 已提交
1590 1591
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1592 1593 1594
    return square_out


Y
yi.wu 已提交
1595
@templatedoc()
Y
Yu Yang 已提交
1596 1597 1598 1599
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1600
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1601
    """
Y
yi.wu 已提交
1602
    **Chunk Evaluator**
Y
yi.wu 已提交
1603

Y
yangyaming 已提交
1604
    This function computes and outputs the precision, recall and
1605
    F1-score of chunk detection.
Y
yi.wu 已提交
1606

M
minqiyang 已提交
1607
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1608
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1609 1610 1611 1612 1613 1614

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1615

Y
yi.wu 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1641

Y
yi.wu 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1666
    Args:
1667 1668 1669 1670 1671
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1672

Y
yi.wu 已提交
1673
    Returns:
Y
update  
yi.wu 已提交
1674 1675 1676
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1677

Y
yi.wu 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1690
    """
F
fengjiayi 已提交
1691
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1692 1693

    # prepare output
X
Xin Pan 已提交
1694 1695 1696 1697 1698 1699 1700
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1701 1702 1703 1704 1705 1706 1707 1708

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1709 1710 1711 1712
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1713 1714 1715
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1716 1717
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1718
        })
1719 1720
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1721 1722


1723
@templatedoc()
Y
Yu Yang 已提交
1724 1725 1726 1727 1728 1729 1730
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1731 1732
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1733 1734 1735 1736
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1737 1738 1739 1740 1741 1742 1743

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1757

1758 1759
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1760 1761
    """

1762 1763
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1764 1765 1766 1767 1768
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1769
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1780
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1781 1782 1783 1784 1785 1786
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1787
def sequence_softmax(input, use_cudnn=False, name=None):
1788 1789 1790
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1791
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1808 1809 1810
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1823 1824
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
1825 1826
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1827
    softmax_out = helper.create_variable_for_type_inference(dtype)
1828 1829 1830 1831 1832 1833 1834 1835
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1836
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1837
    """
1838
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1839
    has the same shape as the input.
Q
qiaolongfei 已提交
1840

D
dengkaipeng 已提交
1841
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1842
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1843
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1844 1845 1846
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1847
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1848
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1849 1850 1851 1852 1853 1854 1855

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1856
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1857 1858 1859 1860 1861 1862 1863 1864

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1865 1866
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1867 1868
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1869 1870 1871
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1881
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1882
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1883 1884
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1885 1886

    """
1887 1888
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1889
    softmax_out = helper.create_variable_for_type_inference(dtype)
1890 1891 1892 1893
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1894 1895
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1896 1897 1898
    return softmax_out


Y
Yu Yang 已提交
1899 1900 1901
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1902 1903
           stride=1,
           padding=0,
1904
           dilation=1,
Y
Yu Yang 已提交
1905 1906 1907
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1908
           use_cudnn=True,
1909 1910
           act=None,
           name=None):
Y
Yu Yang 已提交
1911
    """
C
chengduoZH 已提交
1912
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1913 1914
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1915
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1916 1917 1918 1919 1920 1921 1922
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1923 1924 1925
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1926

1927
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1928

C
chengduoZH 已提交
1929 1930
    .. math::

C
refine  
chengduoZH 已提交
1931
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1932

T
tensor-tang 已提交
1933
    Where:
C
chengduoZH 已提交
1934

1935 1936 1937 1938 1939
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1940
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1941 1942 1943

    Example:

1944 1945
        - Input:

W
weixing02 已提交
1946
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1947

W
weixing02 已提交
1948
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1949

1950
        - Output:
T
tensor-tang 已提交
1951

W
weixing02 已提交
1952
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1953

C
chengduoZH 已提交
1954
        Where
1955 1956

        .. math::
C
chengduoZH 已提交
1957

W
weixing02 已提交
1958 1959
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1960 1961

    Args:
1962
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1963
        num_filters(int): The number of filter. It is as same as the output
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1981 1982 1983 1984 1985
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1986
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1987 1988 1989 1990 1991
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1992 1993
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1994 1995
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1996
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1997
            will be named automatically. Default: None
C
chengduoZH 已提交
1998 1999

    Returns:
G
guosheng 已提交
2000
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2001 2002
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2003
    Raises:
2004 2005
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2006

C
chengduoZH 已提交
2007 2008 2009
    Examples:
        .. code-block:: python

2010 2011
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2012 2013 2014
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2015
    assert param_attr is not False, "param_attr should not be False here."
2016
    l_type = 'conv2d'
X
xzl 已提交
2017 2018
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2019
        l_type = 'depthwise_conv2d'
2020 2021 2022 2023

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2024 2025 2026 2027 2028
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2029
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2030

C
chengduoZH 已提交
2031 2032 2033
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2034
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2035

C
chengduoZH 已提交
2036 2037
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2038 2039

    input_shape = input.shape
M
minqiyang 已提交
2040
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2041 2042

    def _get_default_param_initializer():
C
chengduo 已提交
2043 2044
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2045 2046 2047 2048 2049 2050 2051 2052
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2053
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2069
    helper.append_op(
2070
        type=l_type,
Y
Yu Yang 已提交
2071 2072 2073 2074 2075
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2076 2077 2078
        attrs={
            'strides': stride,
            'paddings': padding,
2079
            'dilations': dilation,
C
chengduoZH 已提交
2080
            'groups': groups,
2081
            'use_cudnn': use_cudnn,
2082
            'use_mkldnn': False,
2083
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2084
        })
Y
Yu Yang 已提交
2085 2086 2087 2088 2089 2090

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2108 2109 2110 2111 2112 2113
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2123 2124
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2125 2126 2127
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2128
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2154
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2155 2156
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2157
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2158 2159
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2160
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2161 2162
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2163
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2164 2165 2166 2167 2168 2169
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2180 2181
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2182 2183
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2184
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2185
            will be named automatically. Default: None.
C
chengduoZH 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2198 2199
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2200 2201 2202
    """

    l_type = 'conv3d'
C
chengduo 已提交
2203
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2214
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2228 2229 2230
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2231 2232 2233 2234 2235 2236 2237 2238
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2239
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2254
            'use_mkldnn': False
C
chengduoZH 已提交
2255 2256
        })

2257
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2258 2259 2260 2261

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2262
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2263
    """
Y
yangyaming 已提交
2264 2265 2266
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2278
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2279 2280 2281 2282 2283
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2284
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2285 2286 2287 2288 2289 2290 2291

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2292 2293
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2294

L
Luo Tao 已提交
2295 2296
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2297
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2298
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2299
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2300 2301 2302 2303 2304 2305 2306

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2307

Y
yangyaming 已提交
2308
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2309 2310 2311 2312 2313
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2314 2315
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2316
    """
2317 2318
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2319
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2320
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2321 2322
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2323 2324 2325 2326 2327 2328

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2329 2330
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2331

Y
yangyaming 已提交
2332 2333 2334 2335 2336
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2337 2338 2339
    return pool_out


C
add doc  
chengduoZH 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
2358 2359
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2360
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2361
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2362 2363 2364 2365 2366
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2367
def sequence_first_step(input):
L
Luo Tao 已提交
2368
    """
L
Luo Tao 已提交
2369
    This function gets the first step of sequence.
L
Luo Tao 已提交
2370 2371 2372 2373

    .. code-block:: text

       x is a 1-level LoDTensor:
2374
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2375 2376 2377 2378 2379
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2380
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2381
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2382

L
Luo Tao 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2392

Y
yangyaming 已提交
2393
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2394 2395 2396
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2397 2398 2399
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2400
def sequence_last_step(input):
L
Luo Tao 已提交
2401
    """
L
Luo Tao 已提交
2402
    This function gets the last step of sequence.
L
Luo Tao 已提交
2403 2404 2405 2406

    .. code-block:: text

       x is a 1-level LoDTensor:
2407
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2408 2409 2410 2411 2412
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2413
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2414
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2415

L
Luo Tao 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2425

Y
yangyaming 已提交
2426
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2427 2428 2429
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2430 2431 2432
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2433 2434 2435 2436
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2437
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2438 2439 2440 2441 2442
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2443

H
haowang101779990 已提交
2444
              - Case:
Y
Yibing Liu 已提交
2445

2446
            Given the input Variable **input**:
2447

2448 2449 2450
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2451

2452
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2453

2454
            the output Variable will be
2455

2456 2457 2458
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2459

M
minqiyang 已提交
2460
    Note:
H
haowang101779990 已提交
2461
          The first dimension size of **input**, **offset** and **length**
2462
          should be equal. The **offset** should start from 0.
2463

Y
Yibing Liu 已提交
2464
    Args:
2465
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2466
                         sequences.
Y
Yibing Liu 已提交
2467 2468 2469 2470 2471 2472
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2473
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2484
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2485 2486
                                                   length=length)
    """
2487 2488
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2489 2490
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2491
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2506
@templatedoc()
Y
Yu Yang 已提交
2507
def pool2d(input,
C
chengduoZH 已提交
2508 2509
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2510 2511
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2512
           global_pooling=False,
C
chengduoZH 已提交
2513
           use_cudnn=True,
2514
           ceil_mode=False,
2515 2516
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2517
    """
F
fengjiayi 已提交
2518
    ${comment}
2519 2520

    Args:
2521 2522 2523
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2524
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2525
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2526 2527
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2528
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2529 2530 2531 2532 2533 2534
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2535 2536 2537
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2538
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2539
                        layer will be named automatically.
2540
        exclusive (bool): Whether to exclude padding points in average pooling
2541
                          mode, default is true
F
fengjiayi 已提交
2542

2543
    Returns:
F
fengjiayi 已提交
2544
        Variable: The pooling result.
F
fengjiayi 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2557
          pool2d = fluid.layers.pool2d(
2558 2559 2560 2561
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2562
                            global_pooling=False)
Y
Yu Yang 已提交
2563 2564 2565 2566 2567
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2568

C
chengduoZH 已提交
2569 2570 2571 2572 2573
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2574 2575 2576 2577
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2578 2579
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2580

C
Add doc  
chengduoZH 已提交
2581
    l_type = 'pool2d'
2582 2583

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2584
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2585
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2586 2587

    helper.append_op(
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2599 2600
            "use_mkldnn": False,
            "exclusive": exclusive,
2601 2602 2603 2604 2605
        })

    return pool_out


D
dengkaipeng 已提交
2606
@templatedoc()
2607 2608 2609 2610 2611 2612 2613 2614
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2615 2616
           name=None,
           exclusive=True):
2617
    """
2618
    ${comment}
2619 2620

    Args:
D
dengkaipeng 已提交
2621 2622 2623 2624 2625
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2626 2627 2628 2629 2630
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2631 2632 2633 2634 2635 2636 2637
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2638
        exclusive (bool): Whether to exclude padding points in average pooling
2639
                          mode, default is true
2640

2641
    Returns:
2642
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2656 2657 2658 2659 2660
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2661

C
chengduoZH 已提交
2662 2663 2664 2665 2666
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2667 2668 2669
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2670

C
chengduoZH 已提交
2671 2672
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2673

2674 2675
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2676
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2677
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2678 2679

    helper.append_op(
2680
        type=l_type,
Y
Yu Yang 已提交
2681 2682 2683 2684 2685 2686 2687
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2688
            "paddings": pool_padding,
2689
            "use_cudnn": use_cudnn,
2690
            "ceil_mode": ceil_mode,
2691 2692
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2693 2694 2695 2696 2697
        })

    return pool_out


2698 2699 2700 2701 2702 2703 2704
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2705 2706 2707 2708 2709 2710 2711
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2726 2727 2728 2729 2730 2731 2732 2733 2734

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2735 2736
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2751
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2752
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2753
          # of input data into m * n grids averagely and performs poolings in each
2754 2755
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2756
          #
2757 2758 2759 2760 2761 2762 2763 2764
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2765 2766
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2767
          pool_out = fluid.layers.adaptive_pool2d(
2768 2769
                            input=data,
                            pool_size=[3, 3],
2770
                            pool_type='avg')
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2781
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2807
    return (pool_out, mask) if require_index else pool_out
2808 2809 2810 2811 2812 2813 2814 2815 2816


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2817 2818 2819 2820 2821 2822 2823
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2842 2843 2844

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2845 2846 2847
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2848
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2849
            it must contain three integers, (Depth, Height, Width).
2850
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2851 2852
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2867 2868
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2869
          # of input data into l * m * n grids averagely and performs poolings in each
2870 2871
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2872
          #
2873 2874 2875 2876 2877 2878 2879 2880 2881
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2882
          #                 output[:, :, i, j, k] =
2883 2884
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2885 2886
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2887
          pool_out, mask = fluid.layers.adaptive_pool3d(
2888
                            input=data,
D
dengkaipeng 已提交
2889
                            pool_size=[3, 3, 3],
2890
                            pool_type='avg')
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2901
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2927
    return (pool_out, mask) if require_index else pool_out
2928 2929


Y
Yu Yang 已提交
2930 2931 2932 2933 2934 2935 2936
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2937
               data_layout='NCHW',
Y
Yang Yang 已提交
2938
               in_place=False,
2939 2940
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2941
               moving_variance_name=None,
2942
               do_model_average_for_mean_and_var=False,
2943 2944
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2945
    """
Q
qiaolongfei 已提交
2946 2947 2948 2949
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2950

Q
qiaolongfei 已提交
2951
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2952

Q
qiaolongfei 已提交
2953 2954
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2955 2956 2957
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2984
    Args:
Q
qingqing01 已提交
2985
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2986
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2996 2997 2998 2999 3000 3001 3002 3003
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3004
        data_layout(string, default NCHW): NCHW|NHWC
3005
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3006 3007 3008 3009
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3010
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3011
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3012 3013 3014 3015 3016
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3017 3018

    Returns:
Q
qiaolongfei 已提交
3019
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3020 3021 3022 3023 3024 3025 3026

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3027
    """
C
chengduo 已提交
3028
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3029 3030 3031
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3032 3033 3034 3035
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3054
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3055

3056 3057
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3058 3059 3060
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3061
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3062
        shape=param_shape,
W
Wu Yi 已提交
3063
        dtype=dtype)
3064 3065 3066 3067 3068 3069
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3070
            trainable=False,
W
wanghaoshuang 已提交
3071
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3072
        shape=param_shape,
W
Wu Yi 已提交
3073
        dtype=dtype)
3074
    variance.stop_gradient = True
Y
Yu Yang 已提交
3075 3076 3077 3078 3079 3080

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3081 3082 3083 3084
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3085

X
Xin Pan 已提交
3086 3087
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3105 3106 3107 3108
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3109
            "data_layout": data_layout,
X
Xin Pan 已提交
3110
            "use_mkldnn": False,
3111 3112
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3113
        })
Y
Yu Yang 已提交
3114 3115 3116 3117

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3237
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3238 3239 3240 3241

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3242
@templatedoc()
G
guosheng 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3253
    ${comment}
G
guosheng 已提交
3254 3255 3256

    The formula is as follows:

Y
yuyang18 已提交
3257
    ..  math::
G
guosheng 已提交
3258 3259 3260 3261 3262 3263 3264

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3265 3266 3267 3268 3269 3270 3271 3272
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3273

G
guosheng 已提交
3274 3275
    Args:
        input(Variable): The input tensor variable.
3276
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3277
            normalization. Default True.
3278
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3279 3280
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3281
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3282
            Default 1.
3283
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3284
            division by zero. Default 1e-05.
G
guosheng 已提交
3285
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3286 3287
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3288 3289
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3290
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3291 3292
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3293
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3294
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3295
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3296 3297 3298
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3299 3300

    Returns:
Y
yuyang18 已提交
3301
        ${y_comment}
G
guosheng 已提交
3302 3303 3304

    Examples:

Y
yuyang18 已提交
3305 3306 3307
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3308
    """
L
lujun 已提交
3309 3310
    assert _in_dygraph_mode(
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3325
    if shift:
G
guosheng 已提交
3326 3327 3328 3329 3330 3331
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3332 3333 3334 3335 3336
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3364
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3412 3413
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3431
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3432 3433 3434
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3435
    This layer calculates the spectral normalization value of weight parameters of
3436
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3437
    Parameters. Calculations are showed as follows.
3438

D
dengkaipeng 已提交
3439 3440 3441
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3442
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3455
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3456 3457 3458 3459

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3460

D
dengkaipeng 已提交
3461
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3462 3463
                

D
dengkaipeng 已提交
3464 3465 3466 3467
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3468 3469 3470
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3471 3472 3473
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3474
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3475 3476 3477 3478 3479 3480 3481 3482

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3483
    dtype = weight.dtype
D
dengkaipeng 已提交
3484 3485 3486

    # create intput and parameters
    inputs = {'Weight': weight}
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3505 3506

    # create output
3507
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3508 3509

    helper.append_op(
3510
        type="spectral_norm",
D
Dun 已提交
3511
        inputs=inputs,
3512 3513 3514 3515 3516 3517
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3518

3519
    return out
D
Dun 已提交
3520 3521


Y
Yu Yang 已提交
3522 3523 3524 3525
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3526 3527 3528
                     padding=0,
                     stride=1,
                     dilation=1,
3529
                     groups=None,
C
caoying03 已提交
3530
                     param_attr=None,
3531
                     bias_attr=None,
C
chengduoZH 已提交
3532
                     use_cudnn=True,
3533
                     act=None,
C
caoying03 已提交
3534
                     name=None):
Y
Yu Yang 已提交
3535
    """
3536 3537 3538 3539 3540 3541 3542 3543
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3544 3545
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3546 3547 3548
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3549 3550 3551 3552 3553

    For each input :math:`X`, the equation is:

    .. math::

3554
        Out = \sigma (W \\ast X + b)
3555

3556
    Where:
3557 3558 3559

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3560 3561 3562 3563
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3564

3565 3566 3567 3568
    Example:

        - Input:

3569
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3570

3571
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3572 3573 3574

        - Output:

3575
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3576 3577

        Where
Y
Yu Yang 已提交
3578

3579 3580
        .. math::

3581 3582
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3583 3584
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3585 3586

    Args:
3587 3588 3589 3590
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3591 3592 3593 3594
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3623
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3624 3625 3626
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3627
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3628
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3629 3630

    Returns:
3631
        Variable: The tensor variable storing the convolution transpose result.
3632 3633

    Raises:
3634 3635
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3636 3637 3638 3639

    Examples:
       .. code-block:: python

3640 3641
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3642
    """
C
chengduo 已提交
3643
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3644 3645 3646 3647 3648 3649 3650 3651
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3652 3653 3654
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3655 3656 3657
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3658

C
chengduoZH 已提交
3659 3660
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3661

Y
Yu Yang 已提交
3662 3663 3664 3665 3666
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3667

Y
Yu Yang 已提交
3668 3669
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3670

C
chengduoZH 已提交
3671
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3672
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3673
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3674
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3675
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3676 3677 3678
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3679

3680 3681 3682 3683 3684 3685 3686
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3687
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3688
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3689

Y
Yu Yang 已提交
3690 3691 3692
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3693
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3694
    helper.append_op(
3695
        type=op_type,
Y
Yu Yang 已提交
3696 3697
        inputs={'Input': [input],
                'Filter': [img_filter]},
3698
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3699
        attrs={
3700
            'output_size': output_size,
3701 3702 3703 3704 3705
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3706 3707
        })

3708 3709 3710
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3711 3712


3713
def conv3d_transpose(input,
Y
Yu Yang 已提交
3714 3715 3716
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3717 3718 3719
                     padding=0,
                     stride=1,
                     dilation=1,
3720
                     groups=None,
C
caoying03 已提交
3721
                     param_attr=None,
3722
                     bias_attr=None,
C
chengduoZH 已提交
3723
                     use_cudnn=True,
3724
                     act=None,
C
caoying03 已提交
3725
                     name=None):
Y
Yu Yang 已提交
3726
    """
3727
    **Convlution3D transpose layer**
3728

3729
    The convolution3D transpose layer calculates the output based on the input,
3730
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3731 3732 3733 3734 3735 3736
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3737 3738 3739
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3740 3741 3742 3743 3744

    For each input :math:`X`, the equation is:

    .. math::

3745
        Out = \sigma (W \\ast X + b)
3746 3747 3748

    In the above equation:

3749 3750
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3751 3752 3753 3754
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3755

3756 3757 3758 3759
    Example:

        - Input:

3760
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3761

3762
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3763 3764 3765

        - Output:

3766
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3767 3768

        Where
Y
Yu Yang 已提交
3769

3770 3771
        .. math::

3772 3773 3774
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3775 3776

    Args:
3777
        input(Variable): The input image with [N, C, D, H, W] format.
3778 3779 3780
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3781
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3782 3783
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3784
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3785 3786 3787
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3788 3789
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3790
        stride(int|tuple): The stride size. If stride is a tuple, it must
3791 3792
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3793
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3794 3795 3796
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3797 3798 3799 3800 3801
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3811 3812
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3813 3814
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3815 3816
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3817 3818

    Returns:
3819
        Variable: The tensor variable storing the convolution transpose result.
3820 3821

    Raises:
3822 3823
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3824 3825 3826 3827

    Examples:
       .. code-block:: python

3828 3829
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3830
    """
C
chengduo 已提交
3831
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3832 3833
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3834
    if not isinstance(input, Variable):
3835
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3836 3837
    input_channel = input.shape[1]

3838 3839 3840
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3841

C
chengduoZH 已提交
3842 3843 3844
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3845 3846 3847 3848 3849 3850
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3851 3852 3853
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3854

3855
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3856
                         padding[0] - 1) // dilation[0] + 1
3857
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3858
                         padding[1] - 1) // dilation[1] + 1
3859
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3860
                         padding[2] - 1) // dilation[2] + 1
3861
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3862
    else:
3863 3864
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3865

3866
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3867
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3868 3869 3870
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3871
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3872
    helper.append_op(
3873
        type=l_type,
Y
Yu Yang 已提交
3874 3875
        inputs={'Input': [input],
                'Filter': [img_filter]},
3876
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3877 3878 3879 3880
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3881
            'groups': groups,
C
chengduoZH 已提交
3882 3883
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3884

3885 3886
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3887
    return out
Y
yangyaming 已提交
3888 3889


Y
yangyaming 已提交
3890
def sequence_expand(x, y, ref_level=-1, name=None):
3891
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3892 3893 3894 3895
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3896 3897 3898 3899 3900

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3901
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3902
                x.data = [[a], [b], [c], [d]]
3903 3904 3905
                x.dims = [4, 1]

            y is a LoDTensor:
3906 3907
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3908

Y
yangyaming 已提交
3909
            ref_level: 0
3910

Y
yangyaming 已提交
3911
            then output is a 1-level LoDTensor:
3912
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3913
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3914 3915 3916 3917
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3918
                x.data = [[a], [b], [c]]
3919 3920 3921
                x.dims = [3, 1]

            y is a LoDTensor:
3922
                y.lod = [[2, 0, 3]]
3923

Y
yangyaming 已提交
3924
            ref_level: -1
3925

Y
yangyaming 已提交
3926 3927 3928
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3929 3930 3931
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3932 3933
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3934
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3935
                        will be named automatically.
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3946
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3947
    """
3948 3949
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3950
    helper = LayerHelper('sequence_expand', input=x, **locals())
3951
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3952
    tmp = helper.create_variable_for_type_inference(dtype)
3953
    helper.append_op(
Y
yangyaming 已提交
3954 3955 3956 3957 3958
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3959
    return tmp
3960 3961


C
chengduo 已提交
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
4016 4017
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4018 4019
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4020
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4021 4022 4023 4024 4025 4026 4027 4028
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4029
@templatedoc()
4030
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4031 4032 4033 4034 4035
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4036 4037 4038
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4039
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4040 4041 4042 4043
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4044 4045 4046
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4047

F
fengjiayi 已提交
4048
    Returns:
M
minqiyang 已提交
4049
        Variable: The padded sequence batch and the original lengths before
4050
                  padding. All sequences has the same length.
M
minqiyang 已提交
4051

F
fengjiayi 已提交
4052 4053 4054 4055 4056 4057 4058
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4059
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4060
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4061 4062 4063
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

4064 4065
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4066 4067
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4068 4069
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4070 4071 4072 4073

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4074 4075 4076 4077 4078 4079
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4080 4081
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4082
        attrs={'padded_length': maxlen})
4083
    return out, length
F
fengjiayi 已提交
4084 4085


4086
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4087
    """
4088
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4089

4090 4091
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4101 4102 4103
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4104
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4105 4106 4107 4108 4109 4110

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4111
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4112 4113 4114 4115 4116 4117

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4118 4119
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

4132 4133
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4134 4135
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4136
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4148 4149 4150 4151 4152 4153 4154
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4155
                is_accumulated=True,
4156 4157
                name=None,
                return_parent_idx=False):
4158
    """
4159 4160
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4161 4162 4163

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4164 4165

    This layer does the search in beams for one time step. Specifically, it
4166 4167 4168
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4180 4181 4182 4183

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4184

4185
    Args:
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4209 4210
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4211 4212
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4213 4214 4215 4216
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4217

4218
    Returns:
4219 4220 4221 4222
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4223 4224 4225 4226

    Examples:
        .. code-block:: python

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4244
    helper = LayerHelper('beam_search', **locals())
4245 4246 4247 4248 4249 4250
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4251

X
Xin Pan 已提交
4252 4253 4254
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4255 4256 4257 4258 4259
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4260 4261 4262

    helper.append_op(
        type='beam_search',
4263
        inputs=inputs,
Q
Qiao Longfei 已提交
4264 4265 4266
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4267
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4268 4269 4270 4271 4272 4273
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4274
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4275
        })
4276 4277 4278 4279
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4280 4281


4282 4283 4284 4285 4286 4287 4288
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4289

4290 4291 4292 4293 4294 4295 4296 4297 4298
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4299

4300 4301 4302 4303 4304 4305
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4306

4307 4308
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4309

4310 4311 4312 4313 4314 4315
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4316 4317
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4333 4334 4335 4336
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4337
              param_attr=None,
C
caoying03 已提交
4338 4339
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4340 4341 4342 4343
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4344
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4345

4346
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4347

4348
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4349

4350
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4351 4352 4353

            h_t & = o_t tanh(c_t)

4354 4355 4356 4357 4358 4359
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4360 4361 4362

        .. math::

4363
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4364 4365 4366 4367 4368 4369 4370 4371

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4372
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4373 4374

    Args:
Y
yangyaming 已提交
4375 4376 4377 4378 4379 4380
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4381
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4394 4395
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4396 4397

    Returns:
Y
yangyaming 已提交
4398
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4399 4400

    Raises:
4401 4402 4403 4404
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4405 4406 4407 4408 4409 4410

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4411
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4412
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4413
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4430
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4431 4432 4433 4434
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4435 4436
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4437 4438 4439
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4440
    size = cell_t_prev.shape[1]
4441
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4442 4443
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4444
                param_attr=param_attr,
4445
                bias_attr=bias_attr)
Y
yangyaming 已提交
4446
    dtype = x_t.dtype
X
Xin Pan 已提交
4447 4448
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4458
    return h, c
G
guosheng 已提交
4459 4460


C
caoying03 已提交
4461
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4462
    """
Y
yangyaming 已提交
4463
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4464 4465 4466

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4467
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4468 4469
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4470 4471
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4472
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4473
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4474
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4475 4476
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4477 4478 4479

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4480

G
guosheng 已提交
4481 4482 4483 4484 4485 4486
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4487
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4488 4489 4490 4491
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4492 4493 4494 4495

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4496
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4497 4498 4499
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4500 4501
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4502
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4503 4504
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4505 4506 4507 4508 4509
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4510
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4511 4512 4513 4514
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4515 4516


C
caoying03 已提交
4517
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4518
    """
Y
Yibing Liu 已提交
4519
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4520 4521 4522

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4523 4524 4525
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4526
            must be in the range :math:`[-rank(input), rank(input))`. If
4527
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4528
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4529 4530
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4531
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4532
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4533
                       will be named automatically.
G
guosheng 已提交
4534 4535

    Returns:
Y
Yibing Liu 已提交
4536
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4537

G
guosheng 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4548 4549
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4550 4551 4552 4553 4554 4555 4556

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4557 4558
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4559
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4560 4561
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4562 4563 4564 4565 4566
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4567
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4568 4569 4570 4571
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4572 4573


C
caoying03 已提交
4574
def reduce_max(input, dim=None, keep_dim=False, name=None):
4575
    """
Y
yangyaming 已提交
4576
    Computes the maximum of tensor elements over the given dimension.
4577 4578 4579

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4580
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4581 4582 4583
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4584
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4585 4586
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4587
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4588 4589
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4590 4591 4592

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4593

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4605 4606 4607 4608 4609 4610 4611

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4612 4613
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4614
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4615 4616
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4617 4618 4619 4620 4621
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4622
            'dim': dim if dim != None else [0],
4623 4624 4625 4626 4627 4628
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4629
def reduce_min(input, dim=None, keep_dim=False, name=None):
4630
    """
Y
yangyaming 已提交
4631
    Computes the minimum of tensor elements over the given dimension.
4632 4633 4634

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4635
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4636 4637 4638
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4639
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4640 4641
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4642
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4643 4644
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4645 4646 4647

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4648

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4660 4661 4662 4663 4664 4665 4666

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4667 4668
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4669
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4670 4671
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4672 4673 4674 4675 4676
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4677
            'dim': dim if dim != None else [0],
4678 4679 4680 4681
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4682 4683


4684 4685 4686 4687 4688 4689
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4690
        dim (list|int|None): The dimensions along which the product is performed. If
4691 4692
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4693 4694
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4695 4696 4697
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4698
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4699
            layer will be named automatically.
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4714
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4715
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4716 4717 4718 4719 4720 4721 4722

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4723 4724
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4725
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4726 4727
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4728 4729 4730 4731 4732
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4733
            'dim': dim if dim != None else [0],
4734 4735 4736 4737 4738 4739
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4740
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4741
    """
C
caoying03 已提交
4742
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4743 4744 4745

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4746 4747 4748 4749 4750
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4751
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4752
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4753
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4754 4755
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4756 4757

    Returns:
D
dzhwinter 已提交
4758
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4768 4769
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4785
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4808
    .. math::
4809 4810

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4811 4812 4813 4814 4815

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4816
        x(Variable|list): The input tensor to l2_normalize layer.
4817
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4818 4819
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4820
        epsilon(float): The epsilon value is used to avoid division by zero, \
4821
            the defalut value is 1e-10.
4822
        name(str|None): A name for this layer(optional). If set None, the layer \
4823
            will be named automatically.
C
caoying03 已提交
4824 4825

    Returns:
4826
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4827 4828

    Examples:
4829

C
caoying03 已提交
4830 4831
        .. code-block:: python

4832 4833 4834 4835
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4836 4837
    """

F
fengjiayi 已提交
4838 4839
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4840 4841
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4842 4843
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4844
    helper.append_op(
4845 4846 4847 4848
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4849
        attrs={
4850 4851
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4852 4853
        })
    return out
4854 4855


S
sneaxiy 已提交
4856
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4857
    """
Y
ying 已提交
4858 4859 4860 4861
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4862

C
chengduoZH 已提交
4863
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4864
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4865

4866 4867 4868 4869 4870
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4871
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4872

C
chengduoZH 已提交
4873
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4874
      performs in the following way.
G
guosheng 已提交
4875

4876
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4877
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4878
        last two dimensions and a batched matrix multiply supporting broadcast
4879
        applies on the two tensors.
G
guosheng 已提交
4880

Y
ying 已提交
4881 4882
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4883
    removed after matrix multiplication.
G
guosheng 已提交
4884 4885 4886

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4887 4888 4889
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4890
        alpha (float): The scale of output. Default 1.0.
4891
        name(str|None): A name for this layer(optional). If set None, the layer
4892
            will be named automatically.
G
guosheng 已提交
4893 4894

    Returns:
4895
        Variable: The product Tensor variable.
G
guosheng 已提交
4896

G
guosheng 已提交
4897 4898 4899
    Examples:
        .. code-block:: python

4900
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4901 4902
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4903

4904 4905
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4906

4907 4908
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4909

4910 4911
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4912 4913 4914 4915

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4916 4917
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4918

Y
ying 已提交
4919
            # x: [M], y: [N]
4920
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4921
    """
Y
ying 已提交
4922 4923 4924 4925 4926 4927 4928

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4929
            y_shape = y_shape + [1]
Y
ying 已提交
4930 4931 4932 4933 4934 4935 4936

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4937 4938
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4939

C
chengduo 已提交
4940
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4941
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4942 4943 4944
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4945
                if dim_x != y_shape[i]:
C
chengduo 已提交
4946 4947
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4948 4949 4950

    __check_input(x, y)

4951
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4952
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4953
    helper.append_op(
4954 4955 4956 4957
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4958 4959 4960
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4961
            'alpha': float(alpha),
S
sneaxiy 已提交
4962
        })
4963
    return out
4964 4965


4966
def topk(input, k, name=None):
Q
qingqing01 已提交
4967 4968 4969 4970
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4971
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4972 4973 4974 4975 4976 4977
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4999 5000 5001
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5002
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5003
                 of input.
5004
        name(str|None): A name for this layer(optional). If set None, the layer
5005
                       will be named automatically.
F
fengjiayi 已提交
5006
                       Default: None
Q
qingqing01 已提交
5007 5008

    Returns:
5009 5010 5011
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5012
        within the last dimension of input.
Q
qingqing01 已提交
5013

F
fengjiayi 已提交
5014 5015
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5016 5017 5018 5019 5020 5021 5022

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5023 5024
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5025 5026 5027 5028 5029 5030
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5031 5032
    helper.append_op(
        type="top_k",
W
whs 已提交
5033
        inputs=inputs,
Q
qingqing01 已提交
5034 5035
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5036
        attrs=attrs)
Q
qingqing01 已提交
5037 5038 5039 5040 5041
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5042
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5043
    """
Y
ying 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5053

Y
ying 已提交
5054
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5055

5056
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5057 5058
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5059
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5060

5061
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5062 5063
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5064

5065 5066 5067
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5068
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5069
                          the length of reference string.
5070
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5071
                                     calculating edit distance.
5072
        name (str): The name of this layer. It is optional.
5073

W
wanghaoshuang 已提交
5074
    Returns:
W
wanghaoshuang 已提交
5075
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5076 5077 5078 5079

    Examples:
        .. code-block:: python

T
tink2123 已提交
5080 5081
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5082
            cost = fluid.layers.edit_distance(input=x,label=y)
5083
    """
5084
    helper = LayerHelper("edit_distance", **locals())
5085

5086
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5087
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5088 5089
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5090 5091 5092 5093 5094

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5095
            attrs={"tokens": ignored_tokens})
5096 5097 5098 5099 5100
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5101
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5102
            attrs={"tokens": ignored_tokens})
5103 5104
        label = erased_label

5105
    # edit distance op
X
Xin Pan 已提交
5106 5107
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5108 5109 5110 5111
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5112 5113
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5114 5115
        attrs={"normalized": normalized})

5116
    return edit_distance_out, sequence_num
5117 5118 5119 5120 5121


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5122

Y
ying 已提交
5123 5124 5125 5126
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5144
        input.lod = [[4, 4]]
M
minqiyang 已提交
5145

W
whs 已提交
5146
        Computation:
5147

W
whs 已提交
5148 5149 5150 5151 5152 5153
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5154 5155 5156 5157 5158

        output.data = [[2],
                       [1],
                       [3]]

5159
        output.lod = [[2, 1]]
5160

W
whs 已提交
5161

5162 5163
    Args:

Y
ying 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5173
        name (str): The name of this layer. It is optional.
5174 5175

    Returns:
H
haowang101779990 已提交
5176 5177 5178
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5179
                  LoD [[]] and dims [1, 1].
5180 5181 5182 5183 5184

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5185

5186
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5187
    """
5188
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5189
    _, topk_indices = topk(input, k=1)
5190 5191

    # ctc align op
X
Xin Pan 已提交
5192
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5193 5194 5195
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5196
        outputs={"Output": [ctc_out]},
5197 5198
        attrs={"merge_repeated": True,
               "blank": blank})
5199
    return ctc_out
5200 5201


W
Wu Yi 已提交
5202
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5203
    """
5204 5205
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5206
    to compute Connectionist Temporal Classification (CTC) loss.
5207 5208
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5209 5210 5211
    input tensor.

    Args:
5212
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5213 5214 5215 5216
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5217
       label (Variable): The ground truth of variable-length sequence,
5218 5219 5220
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5221 5222
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5223 5224 5225
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5226
         follewed by a mean_op.
W
Wu Yi 已提交
5227
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5228 5229

    Returns:
5230 5231
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5232 5233

    Examples:
5234

W
wanghaoshuang 已提交
5235
        .. code-block:: python
5236

5237 5238 5239
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5240 5241

    """
F
fengjiayi 已提交
5242
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5243 5244
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5245 5246 5247 5248 5249 5250
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5251 5252 5253 5254 5255
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5256
    return loss_out
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5272 5273 5274
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5275 5276 5277 5278 5279
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5280

5281
            out.lod  = [[0, 1, 3]]
5282 5283 5284 5285

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5286 5287 5288 5289 5290 5291 5292
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5293 5294 5295

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5296 5297

    Returns:
5298

5299 5300 5301 5302 5303
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5304
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5305
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5306
    """
5307 5308
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
5309
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5310
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5311 5312 5313 5314 5315 5316
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5317 5318


5319 5320 5321 5322
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5323 5324 5325 5326 5327 5328
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5329
        num_neg_samples=None,
5330 5331 5332
        name=None,
        sampler="uniform",
        custom_dist=None,
5333 5334
        seed=0,
        is_sparse=False):
5335 5336 5337 5338 5339 5340 5341
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5342 5343
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5344
            sample is 1.0.
C
chengduo 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5354
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5355 5356
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5357 5358 5359
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5360
        custom_dist (float[]): A float[] with size=num_total_classes.
5361 5362 5363 5364
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5365
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5366

5367
    Returns:
Y
Yibing Liu 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5395 5396 5397 5398 5399 5400 5401 5402 5403

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5404

5405
    """
Y
Yang Yu 已提交
5406 5407 5408
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5409 5410

    dim = input.shape[1]
Y
Yang Yu 已提交
5411 5412 5413 5414 5415 5416
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5417
    inputs = {}
C
chengduo 已提交
5418 5419 5420 5421 5422 5423 5424
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5425 5426 5427
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5428

5429 5430 5431 5432
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5433 5434 5435 5436 5437 5438 5439

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5440 5441 5442 5443 5444 5445 5446 5447 5448
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5449
            if normal_prob - 1.0 > 0:
5450
                bigs.append((i, normal_prob))
5451
            elif 1.0 - normal_prob > 0:
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5467
            if big_left - 1.0 > 0:
5468
                bigs.append((big_idx, big_left))
5469
            elif 1.0 - big_left > 0:
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5499 5500 5501 5502
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5503 5504 5505 5506 5507
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5508 5509 5510 5511
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5512

Y
Yang Yu 已提交
5513 5514
    attrs = {
        'num_total_classes': int(num_total_classes),
5515 5516
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5517
        'sampler': sampler,
5518 5519
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5520
    }
Y
Yang Yu 已提交
5521 5522 5523

    helper.append_op(
        type='nce',
C
chengduo 已提交
5524
        inputs=inputs,
Y
Yang Yu 已提交
5525 5526 5527 5528 5529 5530
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5531
    return cost / (num_neg_samples + 1)
5532 5533


C
chengduo 已提交
5534 5535
def hsigmoid(input,
             label,
5536
             num_classes,
C
chengduo 已提交
5537 5538
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5539
             name=None,
5540 5541 5542
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5543
             is_sparse=False):
W
weixing02 已提交
5544 5545
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5546
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5547
    complete binary tree, or you can use is_custom to pass your own tree to
5548
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5549 5550 5551 5552 5553 5554
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5555
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5556
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5557

5558 5559
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5560 5561 5562 5563
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5564
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5565
       related to the same batch of inputs.
5566

W
weixing02 已提交
5567
    Args:
M
minqiyang 已提交
5568
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5569 5570 5571 5572
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5573 5574
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5575
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5587
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5588
            it should be in leaf -> root order
M
minqiyang 已提交
5589 5590 5591
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5592
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5593
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5594
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5595
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5596
             of W and input will be sparse.
W
weixing02 已提交
5597 5598

    Returns:
J
JiabinYang 已提交
5599
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5600 5601 5602 5603 5604

    Examples:

        .. code-block:: python

G
guosheng 已提交
5605 5606 5607
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5608 5609 5610 5611
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5612 5613
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5614
    dim = input.shape[1]
5615
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5616 5617 5618
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5619 5620 5621 5622
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5623 5624
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5625 5626 5627
    else:
        pass

J
JiabinYang 已提交
5628
    weights = None
5629 5630 5631 5632
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5633
    if not is_custom:
J
JiabinYang 已提交
5634 5635 5636 5637 5638 5639 5640 5641
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5642
            shape=[num_classes, dim],
J
JiabinYang 已提交
5643 5644
            is_bias=False,
            dtype=input.dtype)
5645 5646 5647
    inputs = {
        "X": input,
        "W": weights,
5648
        "PathTable": path_table,
5649
        "PathCode": path_code,
5650 5651
        "Label": label
    }
W
weixing02 已提交
5652
    if helper.bias_attr:
5653
        if not is_custom:
J
JiabinYang 已提交
5654 5655
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5656
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5657 5658 5659 5660 5661 5662
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5663
                shape=[num_classes, 1],
J
JiabinYang 已提交
5664 5665 5666
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5667 5668
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5669
        inputs=inputs,
W
weixing02 已提交
5670
        outputs={"Out": out,
5671 5672 5673 5674 5675 5676 5677
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5678 5679 5680
    return out


Y
fix ci.  
ying 已提交
5681
def transpose(x, perm, name=None):
Y
ying 已提交
5682 5683 5684 5685 5686 5687 5688
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5689 5690 5691
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5692 5693 5694 5695 5696 5697 5698

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5699
            # use append_batch_size=False to avoid prepending extra
5700
            # batch size in shape
5701
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5702
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5703
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5704 5705
    """

Y
fix ci.  
ying 已提交
5706
    if len(perm) != len(x.shape):
Y
ying 已提交
5707 5708 5709
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5710 5711 5712 5713 5714 5715
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5716 5717

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5718 5719
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5720
    helper.append_op(
5721
        type='transpose2',
Y
fix ci.  
ying 已提交
5722
        inputs={'X': [x]},
5723 5724
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5725 5726
        attrs={'axis': perm})
    return out
5727 5728


5729 5730 5731 5732 5733 5734 5735
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5736
    """
5737 5738 5739 5740 5741 5742 5743
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5772 5773 5774 5775 5776 5777 5778 5779 5780
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5781 5782 5783
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5784 5785 5786 5787 5788
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5816 5817 5818
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5831
            output.dims = {8, 8}
5832

5833
            output.lod = [[4, 4]]
5834

T
Tink_Y 已提交
5835
    Examples:
5836 5837 5838

        .. code-block:: python

5839 5840
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5841 5842

    """
5843 5844
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5855 5856 5857 5858 5859 5860 5861
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5862
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5863
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5864
    helper.append_op(
5865
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5866
    return out
5867 5868


Y
yuyang18 已提交
5869
@templatedoc()
5870
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5871 5872
    """
    ${comment}
5873 5874

    Args:
Y
yuyang18 已提交
5875
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5876 5877
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5878 5879 5880 5881 5882
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5883
        ${out_comment}.
5884 5885

    Examples:
Y
yuyang18 已提交
5886 5887 5888 5889
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5890 5891 5892 5893 5894 5895
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5896
    out = helper.create_variable_for_type_inference(dtype)
5897 5898 5899 5900 5901
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5902
    return helper.append_activation(out)
5903 5904


Y
yuyang18 已提交
5905
@templatedoc()
5906 5907
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5908 5909
    ${comment}

L
lujun 已提交
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5953 5954

    Args:
Y
yuyang18 已提交
5955 5956
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5957 5958

    Returns:
Y
yuyang18 已提交
5959
        ${out_comment}.
5960 5961
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5962 5963 5964 5965 5966

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5967
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5968 5969 5970 5971 5972 5973
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5974 5975


5976 5977 5978
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5979
                               ignore_index=kIgnoreIndex,
5980
                               numeric_stable_mode=True,
5981
                               return_softmax=False):
5982 5983
    """
    **Softmax With Cross Entropy Operator.**
5984

5985 5986 5987 5988
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5989

5990 5991 5992
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5993

5994 5995 5996
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5997

5998
    The equation is as follows:
5999

6000
    1) Hard label (one-hot label, so every sample has exactly one class)
6001

6002 6003 6004 6005
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6006

6007 6008 6009
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6010

6011 6012 6013 6014
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6015 6016 6017
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6018

H
haowang101779990 已提交
6019
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6020

H
haowang101779990 已提交
6021
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6022

H
haowang101779990 已提交
6023
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6024 6025 6026

    and then cross entropy loss is calculated by softmax and label.

6027 6028 6029 6030 6031 6032 6033 6034
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6035 6036
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6037
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6038 6039 6040
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6041 6042 6043
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6044
                                    stable algorithm. Default: True
6045
        return_softmax (bool): A flag indicating whether to return the softmax
6046
                               along with the cross entropy loss. Default: False
6047

6048
    Returns:
H
haowang101779990 已提交
6049 6050 6051 6052 6053
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6054 6055 6056 6057 6058 6059 6060

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6061 6062
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6063 6064
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6065 6066
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6067 6068 6069 6070 6071 6072
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6073 6074 6075 6076 6077
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6078 6079 6080 6081

    if return_softmax:
        return loss, softmax

6082 6083 6084
    return loss


6085 6086 6087
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6088
                                       num_true=1,
6089
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6090 6091 6092
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6093
                                       seed=0):
X
xuezhong 已提交
6094 6095 6096 6097 6098
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6099
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6100 6101 6102 6103 6104 6105 6106 6107
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6108
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6109 6110 6111 6112 6113 6114 6115 6116
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6117
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6129
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6130 6131 6132 6133 6134
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6135
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6136
            logits.
X
xuezhong 已提交
6137 6138 6139 6140 6141
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6142 6143 6144
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6165 6166
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6167 6168 6169 6170 6171

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6172
            'Labels': label,
X
xuezhong 已提交
6173 6174
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6175 6176 6177 6178
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6179
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6180 6181 6182
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6183
            'use_customized_samples': use_customized_samples,
6184
            'uniq': True,
X
xuezhong 已提交
6185 6186 6187 6188
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6189 6190
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6191 6192 6193 6194 6195 6196
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6197 6198
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6199
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6200
                'Label': sampled_softlabel},
X
xuezhong 已提交
6201 6202 6203
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6204
            'soft_label': True,
X
xuezhong 已提交
6205 6206 6207
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6208
    return loss / num_true
X
xuezhong 已提交
6209 6210


6211 6212
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6213 6214
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6215
    For each instance, it computes the smooth L1 loss element by element first
6216
    and then sums all the losses. So the shape of ouput Variable is
6217
    [batch_size, 1].
6218

6219 6220
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6221
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6222
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6223
            L1 loss op with same shape as :attr:`x`.
6224
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6225 6226
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6227
            by this tensor element by element.
6228
        outside_weight (Variable|None): A tensor with rank at least 2. This
6229 6230
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6231
            element by element.
6232
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6233 6234
           scalar with default value 1.0.

6235
    Returns:
6236
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6237 6238 6239 6240 6241

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6242 6243
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6244
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6245
            out = fluid.layers.smooth_l1(x=fc, y=label)
6246
    """
6247

6248
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6249 6250
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6261
        attrs={'sigma': sigma if sigma is not None else 1.0})
6262
    return loss
6263 6264 6265 6266


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6267
    This layer creates the one-hot representations for input indices.
6268 6269

    Args:
Y
Yibing Liu 已提交
6270 6271
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6272 6273

    Returns:
Y
Yibing Liu 已提交
6274
        Variable: The one-hot representations of input.
6275 6276

    Examples:
C
caoying03 已提交
6277
        .. code-block:: python
6278

Y
Yibing Liu 已提交
6279 6280
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6281 6282
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6283
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6284 6285 6286 6287
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6288 6289
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6290
    return one_hot_out
Y
Yu Yang 已提交
6291 6292


Y
Yu Yang 已提交
6293
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6294
    """
Y
yi.wu 已提交
6295 6296 6297
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6298 6299 6300 6301 6302 6303

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6304 6305
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6306 6307 6308 6309 6310 6311

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6312 6313
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6314 6315
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6316 6317 6318 6319 6320
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6321
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6322
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6323 6324
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6325
            outputs={'Out': [counter]},
M
minqiyang 已提交
6326 6327
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6328 6329 6330
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6331 6332


6333
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6334
    """
C
caoying03 已提交
6335 6336
    Gives a new shape to the input Tensor without changing its data.

6337 6338 6339 6340 6341
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6342

6343
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6344

6345 6346 6347 6348
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6349
    2. 0 means the actual dimension value is going to be copied from the
6350 6351 6352 6353
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6354 6355

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6356
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6357
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6358

6359
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6360 6361
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6362 6363
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6364
    dimensions.
C
caoying03 已提交
6365

6366
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6367 6368 6369 6370
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6371 6372

    Args:
6373
        x(variable): The input tensor.
C
caoying03 已提交
6374 6375
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6376 6377 6378 6379 6380
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6381 6382
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6383 6384 6385
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6386
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6387
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6388

6389
    Returns:
G
guosheng 已提交
6390 6391 6392 6393
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6394

X
Xin Pan 已提交
6395 6396 6397
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6398 6399
    Examples:
        .. code-block:: python
G
guosheng 已提交
6400

6401
            data = fluid.layers.data(
6402
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6403
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6404
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6405 6406 6407
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6408
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6409 6410 6411 6412 6413
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6414

6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6430
    helper = LayerHelper("reshape2", **locals())
6431 6432
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6433
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6434
    helper.append_op(
6435
        type="reshape2",
X
Xin Pan 已提交
6436
        inputs=inputs,
D
dzhwinter 已提交
6437
        attrs={"shape": shape},
6438 6439
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6440

D
dzhwinter 已提交
6441
    return helper.append_activation(out)
6442

6443

6444
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6445
    """
M
minqiyang 已提交
6446 6447 6448
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6449
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6450

H
haowang101779990 已提交
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6472

Y
Yibing Liu 已提交
6473
    Args:
6474
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6475
        axes (list): List of integers, indicating the dimensions to be squeezed.
6476
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6477 6478 6479 6480 6481 6482 6483 6484

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6485
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6486
    """
L
lujun 已提交
6487 6488
    assert not _in_dygraph_mode(), (
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6489
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6490 6491
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6492
    helper.append_op(
6493
        type="squeeze2",
6494
        inputs={"X": input},
Y
Yibing Liu 已提交
6495
        attrs={"axes": axes},
6496 6497
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6498

6499 6500 6501
    return out


6502
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6503
    """
M
minqiyang 已提交
6504 6505 6506
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6507

M
minqiyang 已提交
6508
    For example:
H
haowang101779990 已提交
6509 6510 6511

    .. code-block:: text

M
minqiyang 已提交
6512
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6513
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6514

Y
Yibing Liu 已提交
6515
    Args:
6516
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6517
        axes (list): List of integers, indicating the dimensions to be inserted.
6518
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6519 6520 6521 6522 6523 6524 6525 6526

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6527
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6528 6529
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6530 6531
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6532
    helper.append_op(
6533
        type="unsqueeze2",
6534
        inputs={"X": input},
Y
Yibing Liu 已提交
6535
        attrs={"axes": axes},
6536 6537
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6538

6539 6540
    return out

6541

Y
yangyaming 已提交
6542
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6543
    """
Y
Yibing Liu 已提交
6544
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6545 6546 6547 6548
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6549
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6550 6551 6552 6553 6554 6555

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6556
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6557 6558 6559
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6560
            target_lod: [4, 2]
Y
yangyaming 已提交
6561 6562

            then we get a 1-level LoDTensor:
6563
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6564 6565 6566 6567 6568 6569
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6570
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6571 6572 6573 6574
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6575
                y.data = [[2, 4]]
Y
yangyaming 已提交
6576 6577 6578
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6579
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6580 6581 6582 6583 6584 6585
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6586
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6587 6588 6589 6590
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6591
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6592 6593 6594 6595
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6596
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6597 6598 6599 6600 6601
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6602
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6603
                           from :attr:`y`.
Y
yangyaming 已提交
6604
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6605
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6606 6607

    Returns:
Y
Yibing Liu 已提交
6608
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6609 6610

    Raises:
Y
Yibing Liu 已提交
6611
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6621
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6647
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6676 6677
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6690 6691 6692
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6706 6707 6708 6709


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6710
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6711
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6712

G
guosheng 已提交
6713 6714 6715 6716
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6739
                         The length of :attr:paddings must be
G
guosheng 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6750

G
guosheng 已提交
6751 6752 6753 6754 6755 6756
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6757
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6758 6759 6760 6761 6762 6763 6764
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6765 6766


C
chengduo 已提交
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6798 6799
		And
            pad_value = -1,
C
chengduo 已提交
6800

T
Tink_Y 已提交
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6836
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6837 6838 6839 6840 6841 6842 6843 6844 6845
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6846 6847 6848 6849 6850 6851 6852
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6853 6854
    called label-smoothing regularization (LSR).

6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6878
                              be :math:`(1, class\_num)`.
6879 6880
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6881
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6901
    smooth_label = helper.create_variable_for_type_inference(dtype)
6902 6903 6904 6905 6906 6907 6908
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6909 6910


W
wopeizl 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6947 6948


J
jerrywgz 已提交
6949 6950 6951 6952 6953 6954
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6955 6956
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6973 6974 6975
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6976 6977 6978 6979 6980 6981
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6982
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7023 7024
        .. code-block:: python

W
whs 已提交
7025 7026 7027 7028
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7029
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7030 7031 7032 7033 7034 7035
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7036 7037


7038 7039 7040 7041
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7042
                 resample='BILINEAR',
7043 7044
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7045
                 align_mode=1):
7046
    """
Q
qiaolongfei 已提交
7047
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7048

7049
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7050 7051 7052
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7053

7054
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7055

7056
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7057

7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7068
    Align_corners and align_mode are optinal parameters,the calculation method 
7069 7070 7071 7072
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7073
    .. code-block:: text
7074

T
Tink_Y 已提交
7075
        For scale:
7076
          
T
Tink_Y 已提交
7077
            if align_corners = True && out_size > 1 :
7078

T
Tink_Y 已提交
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7090

T
Tink_Y 已提交
7091 7092
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7093

T
Tink_Y 已提交
7094 7095
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7096

T
Tink_Y 已提交
7097 7098
          else:
              align_corners = True
7099

T
Tink_Y 已提交
7100 7101
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7102

T
Tink_Y 已提交
7103 7104
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7105

T
Tink_Y 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7116

T
Tink_Y 已提交
7117 7118 7119 7120
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7121

T
Tink_Y 已提交
7122 7123
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7124 7125 7126 7127 7128 7129 7130 7131 7132

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7133
    Args:
7134
        input (Variable): The input tensor of image resize layer,
7135 7136
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7137
        out_shape(list|tuple|Variable|None): Output shape of image resize
7138 7139
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7140
        scale(float|None): The multiplier for the input height or width.
7141 7142 7143
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7144 7145
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7146
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7147
                       currently.
7148
                       Default: 'BILINEAR'
7149 7150 7151
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7152
                                :attr:`out_shape` and :attr:`scale` specifying
7153 7154 7155 7156 7157 7158 7159
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7160 7161
                                constructing stage.
                                Default: None
7162 7163 7164 7165
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7166
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7167 7168
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7169 7170

    Returns:
Q
update  
qiaolongfei 已提交
7171 7172
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7173

7174 7175 7176
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7177
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7178 7179 7180
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7181 7182
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7183

7184 7185 7186
    Examples:
        .. code-block:: python

7187
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7188
    """
7189 7190 7191 7192
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7193 7194
    if resample not in resample_methods:
        raise ValueError(
7195
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7196
        )
7197
    resample_type = resample_methods[resample]
7198 7199 7200 7201 7202 7203

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7204
    if out_shape is None and scale is None:
7205
        raise ValueError("One of out_shape and scale must not be None.")
7206
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7207
    dtype = helper.input_dtype()
7208 7209 7210 7211

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7212 7213 7214
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7215
    if out_shape is not None:
7216 7217 7218 7219
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7220
            inputs['OutSize'] = out_shape
7221 7222 7223 7224 7225 7226 7227 7228
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7229 7230 7231 7232
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7233 7234 7235 7236 7237
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7238
    out = helper.create_variable_for_type_inference(dtype)
7239
    helper.append_op(
7240
        type='{}_interp'.format(resample_type),
7241
        inputs=inputs,
7242
        outputs={"Out": out},
7243 7244 7245 7246 7247 7248 7249
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7250
    return out
F
stash  
fengjiayi 已提交
7251 7252


7253
@templatedoc(op_type="bilinear_interp")
7254 7255 7256 7257
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7258 7259
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7260
                    align_mode=1):
7261
    """
7262 7263
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7264 7265
    in priority order.

7266 7267 7268 7269
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7270 7271
    again in the other direction.

7272
    For details of bilinear interpolation, please refer to Wikipedia:
7273
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7274

T
tink2123 已提交
7275
    Align_corners and align_mode are optinal parameters,the calculation 
7276 7277 7278 7279
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7280
    .. code-block:: text
7281

T
Tink_Y 已提交
7282
        For scale:
7283
          
T
Tink_Y 已提交
7284
            if align_corners = True && out_size > 1 :
7285

T
Tink_Y 已提交
7286 7287 7288 7289 7290
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7291

T
Tink_Y 已提交
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7302 7303


T
Tink_Y 已提交
7304
          else:
T
tink2123 已提交
7305

T
Tink_Y 已提交
7306 7307
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7308

T
Tink_Y 已提交
7309 7310
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7311 7312 7313



Y
yuyang18 已提交
7314 7315 7316 7317
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7318

Y
yuyang18 已提交
7319 7320 7321 7322 7323
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7324 7325 7326
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7327
                                :attr:`out_shape` and :attr:`scale` specifying
7328 7329 7330 7331 7332 7333 7334
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7335 7336
                                constructing stage.
                                Default: None
7337 7338
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7339 7340 7341

    Returns:
        ${out_comment}.
7342 7343 7344 7345 7346

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7347 7348
    """

7349 7350
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7351 7352


7353
@templatedoc(op_type="nearest_interp")
7354 7355 7356 7357
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7358 7359
                   actual_shape=None,
                   align_corners=True):
7360
    """
7361
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7362 7363
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7364 7365
    out_shape and scale in priority order.

7366 7367
    Example:

T
Tink_Y 已提交
7368 7369 7370 7371 7372
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7373

T
Tink_Y 已提交
7374 7375 7376 7377 7378 7379 7380 7381
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7382
          
T
Tink_Y 已提交
7383 7384
          if:
              align_corners = False
7385

T
Tink_Y 已提交
7386 7387
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7388

T
Tink_Y 已提交
7389 7390
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7391

T
Tink_Y 已提交
7392 7393
          else:
              align_corners = True
7394

T
Tink_Y 已提交
7395 7396
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7397

T
Tink_Y 已提交
7398 7399
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7400 7401


7402
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7403
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7404 7405 7406 7407 7408

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7409

Y
yuyang18 已提交
7410 7411 7412 7413 7414
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7415 7416 7417
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7418
                                :attr:`out_shape` and :attr:`scale` specifying
7419 7420 7421 7422 7423 7424 7425
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7426 7427
                                constructing stage.
                                Default: None
7428
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7429 7430 7431

    Returns:
        ${out_comment}.
7432 7433 7434 7435 7436

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7437 7438
    """

7439 7440
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7441 7442 7443 7444


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7445 7446 7447
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7448 7449 7450 7451 7452 7453 7454
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7455
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7456

7457
    Returns:
Q
update  
qiaolongfei 已提交
7458
        Variable: The output is a 4-D tensor of the shape
7459
        (num_batches, channls, out_h, out_w).
7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7470 7471 7472
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7473 7474 7475
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7476 7477
def gather(input, index):
    """
Q
qiaolongfei 已提交
7478 7479
    **Gather Layer**

7480
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7481 7482 7483 7484
    of X indexed by `index` and concatenate them together.

    .. math::

7485
        Out = X[Index]
W
whs 已提交
7486 7487 7488 7489 7490 7491 7492


    .. code-block:: text


                Given:

7493 7494
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7505
        input (Variable): The source input with rank>=1.
W
whs 已提交
7506 7507 7508 7509 7510 7511
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7512

W
whs 已提交
7513 7514 7515 7516 7517 7518
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7519
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7520 7521 7522 7523 7524 7525 7526 7527
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7559
    out = helper.create_variable_for_type_inference(dtype)
7560 7561 7562 7563 7564 7565 7566 7567 7568
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7578

Q
Qingsheng Li 已提交
7579
    Given the following input:
H
haowang101779990 已提交
7580

Q
Qingsheng Li 已提交
7581
    .. code-block:: text
H
haowang101779990 已提交
7582

Q
Qingsheng Li 已提交
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7595

Q
Qingsheng Li 已提交
7596
    .. code-block:: text
H
haowang101779990 已提交
7597

Q
Qingsheng Li 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7613
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7614 7615 7616 7617 7618 7619 7620 7621

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
7622 7623
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7624 7625
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7626
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7627 7628 7629 7630 7631 7632 7633 7634 7635
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7649

7650 7651 7652
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7653
    """
F
stash  
fengjiayi 已提交
7654
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7655
    dtype = x.dtype
X
Xin Pan 已提交
7656
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7657
    if seed is None:
7658
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7659
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7660
    if isinstance(seed, int):
F
fengjiayi 已提交
7661 7662 7663 7664 7665
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7666 7667 7668 7669
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7670
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7671 7672
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7673 7674
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7675
    return out
W
whs 已提交
7676 7677


7678
def log(x, name=None):
W
wanghaoshuang 已提交
7679 7680 7681 7682 7683
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7684
        Out = \\ln(x)
W
wanghaoshuang 已提交
7685 7686

    Args:
7687
        x (Variable): Input tensor.
7688 7689
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7690 7691 7692 7693 7694 7695 7696 7697

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7698
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7699 7700
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7701
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7702
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7703
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7704 7705 7706
    return out


7707
def relu(x, name=None):
W
wanghaoshuang 已提交
7708 7709
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7710
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7711 7712 7713 7714
    the tensor elementwise.

    .. math::

7715
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7716 7717

    Args:
7718
        x (Variable): The input tensor.
7719 7720
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7721 7722 7723 7724 7725 7726 7727 7728

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7729
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7730 7731
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7732
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7733
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7734 7735
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7736
    return out
7737 7738


C
chengduo 已提交
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7780 7781 7782
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7783 7784 7785 7786
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7787
    .. math::
7788

H
haowang101779990 已提交
7789
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7790

7791
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7792 7793 7794 7795 7796
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7797
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7798
                           Its shape should be the same as input.
7799
        num_classes (int): The possible number of labels.
W
whs 已提交
7800 7801

    Returns:
M
minqiyang 已提交
7802 7803
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7804
                     Three variables:
M
minqiyang 已提交
7805

H
haowang101779990 已提交
7806 7807 7808
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7809 7810 7811 7812

    Examples:

        .. code-block:: python
7813

W
whs 已提交
7814 7815 7816 7817
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7818 7819 7820
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7821 7822
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7823 7824
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7825
        outputs={
W
whs 已提交
7826 7827 7828
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7829 7830 7831
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7900
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7901 7902 7903 7904 7905

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7906
            isinstance(shape, Variable)):
7907 7908 7909 7910 7911
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7912
    out = helper.create_variable_for_type_inference(x.dtype)
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7930 7931


W
whs 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7949

W
whs 已提交
7950
              out_shape = [2, 3, 5, 5]
7951

W
whs 已提交
7952
          Step 1:
7953

W
whs 已提交
7954 7955 7956
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7957

W
whs 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8003
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8004
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8017

W
whs 已提交
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8029
            isinstance(out_shape, Variable)):
W
whs 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8051 8052
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8053

8054 8055
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8056
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8057 8058 8059
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8060

8061 8062
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8063

H
haowang101779990 已提交
8064 8065
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8066 8067
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8068

H
haowang101779990 已提交
8069 8070 8071 8072 8073 8074 8075 8076
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8077 8078 8079

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8114
    out = helper.create_variable_for_type_inference("float32")
8115 8116 8117 8118 8119 8120 8121 8122

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8123 8124


M
minqiyang 已提交
8125 8126
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8127
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8128
    which compares left score and right score passed in.
M
minqiyang 已提交
8129
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8130 8131 8132

    .. math::

H
haowang101779990 已提交
8133
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8134 8135

    Args:
M
minqiyang 已提交
8136
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8137 8138
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8139
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8140 8141
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8142

M
minqiyang 已提交
8143
    Returns:
M
minqiyang 已提交
8144
       Variable: The ranking loss.
H
haowang101779990 已提交
8145

M
minqiyang 已提交
8146
    Raises:
M
minqiyang 已提交
8147
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8148

M
minqiyang 已提交
8149
    Examples:
H
haowang101779990 已提交
8150

M
minqiyang 已提交
8151
        .. code-block:: python
H
haowang101779990 已提交
8152

M
minqiyang 已提交
8153 8154 8155 8156 8157
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8158
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8159 8160 8161 8162 8163 8164
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8165 8166
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8190
        .. code-block:: text
W
whs 已提交
8191

T
Tink_Y 已提交
8192
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8193

T
Tink_Y 已提交
8194 8195
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8196

T
Tink_Y 已提交
8197
	      Case 0:
M
minqiyang 已提交
8198

T
Tink_Y 已提交
8199 8200 8201
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8202

T
Tink_Y 已提交
8203 8204 8205
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8206

T
Tink_Y 已提交
8207
	      Case 1:
M
minqiyang 已提交
8208

T
Tink_Y 已提交
8209 8210
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8211

T
Tink_Y 已提交
8212 8213 8214
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8215

T
Tink_Y 已提交
8216
	      Case 2:
M
minqiyang 已提交
8217

T
Tink_Y 已提交
8218 8219
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8220

T
Tink_Y 已提交
8221 8222 8223
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8224 8225


W
whs 已提交
8226 8227
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8228
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8252
    out = helper.create_variable_for_type_inference(dtype)
8253 8254 8255 8256 8257 8258 8259 8260 8261
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8262
    helper.append_op(
8263
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8264 8265 8266 8267

    return out


8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8280 8281 8282 8283 8284

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8285 8286
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8287 8288
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8289
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8310 8311 8312 8313 8314

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8315 8316
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8317 8318
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8319
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8340 8341 8342 8343 8344

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8345 8346
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8347 8348
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8349
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8371 8372 8373 8374 8375

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8376
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8377
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8378 8379
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8403 8404 8405 8406 8407

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8408 8409
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8410 8411
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8412
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8434 8435 8436 8437 8438

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8439 8440
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8441 8442
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8443
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8444 8445 8446 8447 8448 8449 8450 8451
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8452 8453 8454 8455
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8456 8457
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8458 8459 8460

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8461
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8462
          weight (alpha).
J
jerrywgz 已提交
8463
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8464 8465 8466
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8467
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8468
          will be named automatically.
J
jerrywgz 已提交
8469 8470 8471 8472 8473 8474 8475 8476

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8477
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8491
        attr=helper.param_attr,
J
jerrywgz 已提交
8492 8493 8494 8495
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8496
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8497 8498 8499 8500 8501 8502 8503 8504 8505
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8516
    Returns:
8517
        output(${out_type}): ${out_comment}
8518 8519 8520

    Examples:

8521
    .. code-block:: python
8522

H
haowang101779990 已提交
8523 8524
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8525 8526
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8527
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8546
    Returns:
8547
        output(${out_type}): ${out_comment}
8548 8549 8550 8551 8552

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8553 8554
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8555 8556
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8557
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8575
    Returns:
8576
        output(${out_type}): ${out_comment}
8577 8578 8579 8580 8581

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8582 8583
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8584 8585
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8586
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8587 8588 8589 8590 8591 8592 8593 8594
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8595 8596 8597 8598
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8599

H
haowang101779990 已提交
8600
    For Example:
M
minqiyang 已提交
8601

H
haowang101779990 已提交
8602
    .. code-block:: text
8603

H
haowang101779990 已提交
8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8625 8626 8627

    Args:
        x (Variable): A tensor of rank >= axis.
8628 8629
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8630 8631 8632 8633 8634 8635 8636 8637
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8638 8639 8640
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8641 8642 8643 8644
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8645
        ValueError: If axis is not in range [0, rank(x)].
8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8662 8663
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8664
    helper.append_op(
8665
        type='flatten2',
8666
        inputs={"X": x},
8667 8668
        outputs={'Out': out,
                 'XShape': x_shape},
8669 8670
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8671 8672


C
chenweihang 已提交
8673
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8674
    """
C
chenweihang 已提交
8675
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8676
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8677 8678
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8679

H
haowang101779990 已提交
8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8697 8698

    Args:
C
chenweihang 已提交
8699 8700 8701
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8702 8703 8704 8705 8706 8707 8708 8709 8710 8711

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
8712 8713
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8714
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8715 8716
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8717 8718 8719 8720 8721 8722
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8723
    return out
8724

8725

S
sneaxiy 已提交
8726 8727 8728 8729 8730 8731 8732 8733 8734
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8735

S
sneaxiy 已提交
8736
    .. math::
8737

S
sneaxiy 已提交
8738 8739 8740
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8741
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8742 8743 8744 8745
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8746 8747 8748
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8749 8750
    Returns:
        Variable: The output sequence mask.
8751

S
sneaxiy 已提交
8752
    """
8753 8754
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8755

Q
qingqing01 已提交
8756
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8757
    if name is None:
X
Xin Pan 已提交
8758
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8759
    else:
X
Xin Pan 已提交
8760
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8761

Q
qingqing01 已提交
8762 8763 8764
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8765 8766
        outputs={'Y': out},
        attrs={
8767
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8768 8769 8770
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8771 8772


X
Xin Pan 已提交
8773
def stack(x, axis=0):
S
sneaxiy 已提交
8774 8775 8776 8777
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8778 8779 8780 8781 8782 8783 8784

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8785
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8786
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8787

C
chengduozh 已提交
8788 8789
    For Example:

C
chengduozh 已提交
8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8828
    Args:
8829
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8830
        axis (int|None): The axis along which all inputs are stacked.
8831

S
sneaxiy 已提交
8832 8833
    Returns:
        Variable: The stacked variable.
8834

S
sneaxiy 已提交
8835 8836
    """

X
Xin Pan 已提交
8837 8838 8839 8840 8841 8842
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8843
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8844
    helper.append_op(
S
sneaxiy 已提交
8845 8846
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8847

X
Xin Pan 已提交
8848
    return out
D
dzhwinter 已提交
8849 8850 8851 8852 8853 8854 8855


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8856

D
dzhwinter 已提交
8857 8858 8859
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8860
    raised.
D
dzhwinter 已提交
8861 8862

    Args:
M
minqiyang 已提交
8863
        x (Variable): Input variable.
D
dzhwinter 已提交
8864 8865
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8866

D
dzhwinter 已提交
8867 8868
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8869

D
dzhwinter 已提交
8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8880
    for _ in range(num):
X
Xin Pan 已提交
8881
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8882 8883 8884 8885 8886 8887 8888 8889

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8902

W
whs 已提交
8903 8904 8905 8906
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8907

W
whs 已提交
8908
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8909

W
whs 已提交
8910
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8911

W
whs 已提交
8912 8913 8914 8915
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8916

W
whs 已提交
8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8933
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8934 8935 8936 8937 8938 8939
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8940 8941


G
fix  
gongweibao 已提交
8942 8943 8944
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8945
@templatedoc()
G
fix  
gongweibao 已提交
8946 8947 8948 8949 8950 8951 8952 8953 8954
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8955
    ${comment}
G
fix  
gongweibao 已提交
8956 8957

    Args:
G
gongweibao 已提交
8958 8959 8960
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8961
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8962 8963 8964
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8965 8966
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8967
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8968

8969 8970 8971 8972 8973
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8974 8975 8976
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8977
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8994 8995


G
gongweibao 已提交
8996
@templatedoc()
X
Xin Pan 已提交
8997
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8998
    """
G
gongweibao 已提交
8999
    ${comment}
G
fix  
gongweibao 已提交
9000 9001

    Args:
G
gongweibao 已提交
9002 9003 9004 9005
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9006 9007 9008
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9009
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9010

9011 9012 9013 9014
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9015 9016 9017
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9018
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9029
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9030 9031 9032 9033 9034
        })

    return out


G
gongweibao 已提交
9035
@templatedoc()
G
fix  
gongweibao 已提交
9036
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9037
    """
G
gongweibao 已提交
9038
    ${comment}
G
fix  
gongweibao 已提交
9039 9040

    Args:
G
gongweibao 已提交
9041 9042 9043 9044
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9045
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9046 9047

    Returns:
G
gongweibao 已提交
9048
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9049

9050 9051 9052 9053 9054 9055 9056 9057 9058 9059
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9060 9061 9062
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9063
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9075
@templatedoc()
G
fix  
gongweibao 已提交
9076 9077 9078 9079 9080 9081 9082 9083 9084
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9085
    ${comment}
G
fix  
gongweibao 已提交
9086 9087

    Args:
G
gongweibao 已提交
9088 9089
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9090
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9091 9092 9093 9094
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9095
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9096 9097

    Returns:
G
gongweibao 已提交
9098
        out (Variable): ${out_comment}
9099 9100 9101 9102 9103 9104 9105 9106

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9107 9108 9109
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9110
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9129
@templatedoc()
X
Xin Pan 已提交
9130
def sum(x):
G
fix  
gongweibao 已提交
9131
    """
G
gongweibao 已提交
9132
    ${comment}
G
fix  
gongweibao 已提交
9133 9134

    Args:
G
gongweibao 已提交
9135
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9136 9137

    Returns:
G
gongweibao 已提交
9138
        out (Variable): ${out_comment}
9139 9140 9141 9142 9143 9144

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9145 9146 9147
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9148 9149
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9150 9151 9152 9153
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9154
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9155 9156 9157 9158

    return out


G
gongweibao 已提交
9159
@templatedoc()
G
fix  
gongweibao 已提交
9160 9161
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9162
    ${comment}
G
fix  
gongweibao 已提交
9163 9164

    Args:
G
gongweibao 已提交
9165 9166 9167 9168
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9169 9170

    Returns:
G
gongweibao 已提交
9171
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9172

9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9184 9185 9186
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9187 9188
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9202 9203
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9204
    Get the shape of the input.
G
fix  
gongweibao 已提交
9205 9206

    Args:
C
chengduozh 已提交
9207
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9208 9209

    Returns:
C
fix doc  
chengduozh 已提交
9210
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9211

9212 9213 9214 9215 9216 9217
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9218 9219 9220
    """

    helper = LayerHelper('shape', **locals())
9221
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9222
    helper.append_op(
G
fix  
gongweibao 已提交
9223
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9224 9225

    return out
G
merge  
gongweibao 已提交
9226 9227


S
sneaxiy 已提交
9228 9229 9230 9231
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9232
    if _in_dygraph_mode():
X
Xin Pan 已提交
9233 9234 9235
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9236 9237 9238 9239
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9240 9241
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9242
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9243 9244 9245
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9246

S
sneaxiy 已提交
9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9258
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9259 9260 9261 9262 9263 9264 9265 9266
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9267
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9268
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9269 9270 9271 9272 9273 9274

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9275
    if name is None:
X
Xin Pan 已提交
9276
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9277 9278 9279
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9280 9281 9282 9283 9284 9285 9286 9287 9288 9289

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9290
    return helper.append_activation(out)
S
sneaxiy 已提交
9291 9292


X
Xin Pan 已提交
9293
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9294 9295 9296
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9297
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9298 9299 9300
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9301
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9302 9303 9304
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9305
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9306 9307 9308
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9309
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9310 9311 9312
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9313
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9314 9315 9316
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9317
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9318 9319 9320
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9321 9322 9323 9324 9325 9326 9327 9328
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9329
for func in [
9330 9331 9332 9333 9334 9335 9336 9337 9338
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9339 9340 9341 9342 9343
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9344 9345
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9346
        ])
M
minqiyang 已提交
9347 9348


9349
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9350 9351
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9352 9353
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9354 9355 9356

    if out is None:
        if name is None:
X
Xin Pan 已提交
9357
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9373
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9385 9386 9387 9388 9389 9390 9391 9392 9393

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9394 9395 9396 9397 9398 9399 9400
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9401
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9413 9414 9415 9416 9417 9418 9419 9420 9421

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9422 9423 9424 9425 9426 9427 9428
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9429
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9441 9442 9443 9444 9445 9446 9447 9448 9449

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9450 9451 9452 9453 9454 9455 9456
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9457
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9458 9459 9460 9461 9462 9463 9464 9465 9466 9467
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9468 9469 9470 9471 9472 9473 9474

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9475 9476 9477 9478
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9494 9495 9496 9497 9498 9499 9500

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9501 9502 9503 9504 9505
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9506 9507 9508 9509
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9533 9534 9535 9536 9537 9538 9539

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9540 9541 9542 9543 9544
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9545 9546 9547 9548
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9549 9550 9551 9552 9553 9554 9555 9556

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9575
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9576 9577 9578 9579 9580 9581 9582 9583 9584 9585
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9628
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9629 9630 9631 9632 9633 9634 9635 9636 9637
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9638 9639
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9640 9641 9642 9643 9644 9645
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9646 9647 9648
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9649 9650
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9651 9652 9653 9654 9655 9656
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9657
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9658
        name(basestring|None): Name of the output.
9659 9660
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9661 9662 9663

    Returns:
        out(${out_type}): ${out_comment}
9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9678 9679 9680 9681 9682
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9683
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9684 9685 9686 9687 9688 9689 9690 9691
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9692 9693
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9714
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9715 9716 9717 9718 9719 9720 9721 9722 9723 9724
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9725 9726


J
JiabinYang 已提交
9727
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9728
    """
J
JiabinYang 已提交
9729
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9730 9731 9732

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9733
    The attr blocksize indicates the input block size.
9734 9735

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9736
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9737 9738

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9739
    (but keeping all data)
J
JiabinYang 已提交
9740

J
JiabinYang 已提交
9741
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9742
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9743 9744 9745 9746 9747
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9748
    Args:
J
JiabinYang 已提交
9749
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9750
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9751 9752

    Returns:
J
JiabinYang 已提交
9753
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9754 9755

    Raises:
J
JiabinYang 已提交
9756
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9757 9758 9759 9760 9761

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9762
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9763
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9764
                x=data, blocksize=2)
9765 9766 9767 9768 9769 9770

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9771 9772
    """

J
JiabinYang 已提交
9773
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9774

J
JiabinYang 已提交
9775 9776
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9777 9778

    if name is None:
J
JiabinYang 已提交
9779 9780
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9781 9782 9783 9784 9785
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9786
        type="space_to_depth",
J
JiabinYang 已提交
9787
        inputs={"X": x},
J
JiabinYang 已提交
9788
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9789
        outputs={"Out": out})
J
JiabinYang 已提交
9790 9791
    return out

J
JiabinYang 已提交
9792

S
sneaxiy 已提交
9793 9794
@templatedoc()
def sequence_reverse(x, name=None):
9795
    """
S
sneaxiy 已提交
9796 9797 9798 9799 9800 9801 9802 9803 9804
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
9805 9806
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9807 9808
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9809
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9810 9811 9812 9813 9814 9815 9816 9817 9818 9819
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9820 9821


9822 9823 9824 9825 9826 9827
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9828 9829 9830 9831 9832
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9833

9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9846
        act (str, default None): Activation to be applied to the output of this layer.
9847 9848 9849 9850 9851 9852 9853

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9854
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9866
    return helper.append_activation(out)
9867 9868


B
barrierye 已提交
9869
def similarity_focus(input, axis, indexes, name=None):
9870
    """
B
barrierye 已提交
9871
    SimilarityFocus Operator
B
barrierye 已提交
9872 9873

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9874

9875 9876 9877
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9878
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9879 9880 9881 9882 9883 9884 9885
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9886
       each index.
B
barrierye 已提交
9887 9888 9889 9890
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9940
    Args:
9941
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9942
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9943
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9944
            1, 2 or 3.
B
barrierye 已提交
9945
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9946 9947

    Returns:
H
haowang101779990 已提交
9948 9949
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9950

B
barrierye 已提交
9951 9952
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9953

B
barrierye 已提交
9954
            data = fluid.layers.data(
B
barrierye 已提交
9955 9956
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9957

B
barrierye 已提交
9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9970 9971 9972 9973 9974
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9975 9976 9977 9978 9979 9980 9981
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9982 9983


M
minqiyang 已提交
9984 9985
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9986 9987
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9988 9989
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10028
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10029
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10030 10031 10032 10033 10034 10035

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10036

M
minqiyang 已提交
10037 10038 10039
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10040 10041
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10042 10043
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10044 10045 10046 10047 10048 10049 10050
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10051 10052


D
dengkaipeng 已提交
10053
@templatedoc()
10054 10055
def grid_sampler(x, grid, name=None):
    """
10056
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10057
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10058 10059 10060 10061
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10062
    interpolation value of 4 nearest corner points.
10063

H
haowang101779990 已提交
10064
    .. code-block:: text
10065

H
haowang101779990 已提交
10066 10067
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10068

H
haowang101779990 已提交
10069 10070
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10071

H
haowang101779990 已提交
10072 10073 10074
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10075

H
haowang101779990 已提交
10076 10077 10078 10079 10080 10081 10082 10083 10084
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10085

H
haowang101779990 已提交
10086 10087 10088 10089
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10090

H
haowang101779990 已提交
10091 10092 10093 10094
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10095

H
haowang101779990 已提交
10096 10097 10098 10099
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10100

H
haowang101779990 已提交
10101 10102
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10103 10104

    Args:
10105 10106 10107
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10108 10109

    Returns:
H
haowang101779990 已提交
10110
        Variable: Output of shape [N, C, H, W] data samples input X
10111 10112
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10113 10114 10115 10116 10117 10118 10119 10120
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10121

D
dengkaipeng 已提交
10122 10123 10124 10125 10126 10127 10128 10129 10130
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10131
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10132 10133
    ipts = {'X': x, 'Grid': grid}

10134
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10135 10136 10137
    return out


G
gmcather 已提交
10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10204
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10205 10206 10207 10208 10209 10210 10211
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10212

H
heqiaozhi 已提交
10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10227 10228 10229 10230
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10231
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10232 10233
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10234
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10235 10236

    .. math::
H
haowang101779990 已提交
10237 10238 10239
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10240 10241

    Where:
H
haowang101779990 已提交
10242 10243
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10258

G
gmcather 已提交
10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10275 10276 10277 10278 10279 10280 10281 10282 10283 10284


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10285
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10286

Q
Qiao Longfei 已提交
10287
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10288 10289 10290
    For example:

    .. math::
H
haowang101779990 已提交
10291
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10292

Q
Qiao Longfei 已提交
10293
    In this formula:
10294 10295
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10296
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10297
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10298 10299 10300
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10301 10302
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10303 10304 10305
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10306
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10307
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10308
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10309 10310 10311 10312
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10313
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10314 10315 10316 10317

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10318
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10319 10320
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10321
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10322 10323 10324 10325

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10326
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10367 10368


S
shippingwang 已提交
10369
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10370 10371
    """
    **Shuffle Channel Operator**
10372

S
shippingwang 已提交
10373 10374 10375 10376 10377 10378
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10379
    
S
shippingwang 已提交
10380
    .. code-block:: text
10381

S
shippingwang 已提交
10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10410
    Args: 
S
shippingwang 已提交
10411 10412
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10413 10414

    Returns:
S
shippingwang 已提交
10415 10416
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10417 10418

    Raises:
S
shippingwang 已提交
10419
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10420 10421 10422

    Examples:
        .. code-block:: python
10423 10424

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10425
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10426 10427 10428
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10429
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10430 10431 10432 10433 10434 10435 10436 10437 10438

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10439
    return out
S
Add  
shippingwang 已提交
10440 10441


10442
@templatedoc()
D
dengkaipeng 已提交
10443
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10444 10445 10446 10447 10448 10449 10450 10451
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10452
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10453
        name (str, default None): The name of this layer.
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10466
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10479 10480
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10481 10482 10483
    return out


S
sneaxiy 已提交
10484
class PyFuncRegistry(object):
S
sneaxiy 已提交
10485 10486 10487
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10488
        if func is None or not callable(func):
S
sneaxiy 已提交
10489 10490 10491
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10492
        # find named args using reflection
S
sneaxiy 已提交
10493 10494 10495 10496 10497 10498 10499
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10500 10501 10502
        '''
        Why record self here?

M
minqiyang 已提交
10503 10504
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10505
           to find the registered function corresponding
M
minqiyang 已提交
10506
           to :code:`idx`.
S
sneaxiy 已提交
10507

M
minqiyang 已提交
10508 10509
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10510
           whose reference count is 1 would cause
M
minqiyang 已提交
10511
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10512 10513
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10514
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10529 10530 10531 10532 10533 10534 10535 10536 10537
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10538

S
sneaxiy 已提交
10539 10540
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10541 10542

        ret = []
S
sneaxiy 已提交
10543 10544 10545
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10546 10547
                continue

S
sneaxiy 已提交
10548 10549
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10550

S
sneaxiy 已提交
10551 10552 10553
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10554

S
sneaxiy 已提交
10555
        return tuple(ret)
S
sneaxiy 已提交
10556 10557


S
sneaxiy 已提交
10558 10559 10560 10561
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10562

S
sneaxiy 已提交
10563 10564 10565 10566 10567 10568 10569 10570
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10571
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10572

S
sneaxiy 已提交
10573 10574
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10575 10576 10577 10578
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10579
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10580
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10581 10582
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10583 10584 10585 10586 10587
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10588
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10589
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10590
                                       None means no backward. Default None.
S
sneaxiy 已提交
10591
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10592
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10593 10594
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10595
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10596 10597 10598

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10599 10600

    Examples:
M
minqiyang 已提交
10601

S
sneaxiy 已提交
10602 10603 10604 10605 10606
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10607
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10608 10609
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10610
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10611 10612 10613
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10614
        >>>
S
sneaxiy 已提交
10615 10616 10617 10618 10619
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10620
        >>>     print(x)
S
sneaxiy 已提交
10621 10622 10623 10624 10625 10626
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10627
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10628 10629
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10630 10631
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10632 10633 10634 10635 10636 10637 10638 10639
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10640
    """
S
sneaxiy 已提交
10641
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10642 10643 10644
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10645
        x = [x]
S
sneaxiy 已提交
10646 10647
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10648

S
sneaxiy 已提交
10649 10650 10651
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10652
        out_list = [out]
S
sneaxiy 已提交
10653
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10654
        out_list = out
S
sneaxiy 已提交
10655 10656 10657
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10658

S
sneaxiy 已提交
10659 10660
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10661
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10662 10663

    for each_out in out_list:
S
sneaxiy 已提交
10664 10665
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10666 10667
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10668

S
sneaxiy 已提交
10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10684 10685 10686 10687

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10688 10689
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10690 10691 10692
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10693
        })
S
sneaxiy 已提交
10694
    return out
S
sneaxiy 已提交
10695 10696 10697


# For debug usage
S
sneaxiy 已提交
10698 10699 10700 10701
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10754

M
minqiyang 已提交
10755

M
minqiyang 已提交
10756
def huber_loss(input, label, delta):
10757
    """
M
minqiyang 已提交
10758 10759 10760
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10761 10762 10763 10764

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10765
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10766 10767 10768 10769

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10770
        huber\_loss = 0.5 * (label - input) * (label - input)
10771 10772 10773 10774 10775 10776 10777


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10778
        delta (float): The parameter of huber loss, which controls
10779 10780 10781
                       the range of outliers

    Returns:
M
minqiyang 已提交
10782
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10783 10784 10785 10786 10787

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10788
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10789
    """
M
minqiyang 已提交
10790
    helper = LayerHelper('huber_loss', **locals())
10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10802 10803


D
dengkaipeng 已提交
10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10904 10905


C
ceci3 已提交
10906
from .ops import square
C
ceci3 已提交
10907
from .control_flow import equal
C
ceci3 已提交
10908 10909


C
ceci3 已提交
10910 10911 10912
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10913

C
ceci3 已提交
10914
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10915 10916

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10917
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10918 10919 10920 10921 10922
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10923 10924
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10925 10926 10927 10928 10929 10930 10931

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10932 10933 10934 10935 10936 10937 10938 10939
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10940 10941 10942 10943 10944 10945 10946
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10947
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10948 10949
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10950 10951
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10952 10953 10954 10955
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10956 10957 10958
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10959 10960 10961
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004


def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out