faster_rcnn.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

Q
qingqing01 已提交
15 16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
20
from ppdet.core.workspace import register, create
Q
qingqing01 已提交
21 22 23 24 25 26 27
from .meta_arch import BaseArch

__all__ = ['FasterRCNN']


@register
class FasterRCNN(BaseArch):
F
Feng Ni 已提交
28 29 30 31 32 33 34 35 36 37
    """
    Faster R-CNN network, see https://arxiv.org/abs/1506.01497

    Args:
        backbone (object): backbone instance
        rpn_head (object): `RPNHead` instance
        bbox_head (object): `BBoxHead` instance
        bbox_post_process (object): `BBoxPostProcess` instance
        neck (object): 'FPN' instance
    """
Q
qingqing01 已提交
38
    __category__ = 'architecture'
39
    __inject__ = ['bbox_post_process']
Q
qingqing01 已提交
40 41 42 43 44 45 46 47 48

    def __init__(self,
                 backbone,
                 rpn_head,
                 bbox_head,
                 bbox_post_process,
                 neck=None):
        super(FasterRCNN, self).__init__()
        self.backbone = backbone
49
        self.neck = neck
Q
qingqing01 已提交
50 51 52 53
        self.rpn_head = rpn_head
        self.bbox_head = bbox_head
        self.bbox_post_process = bbox_post_process

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        backbone = create(cfg['backbone'])
        kwargs = {'input_shape': backbone.out_shape}
        neck = cfg['neck'] and create(cfg['neck'], **kwargs)

        out_shape = neck and neck.out_shape or backbone.out_shape
        kwargs = {'input_shape': out_shape}
        rpn_head = create(cfg['rpn_head'], **kwargs)
        bbox_head = create(cfg['bbox_head'], **kwargs)
        return {
            'backbone': backbone,
            'neck': neck,
            "rpn_head": rpn_head,
            "bbox_head": bbox_head,
        }
Q
qingqing01 已提交
70

71 72
    def _forward(self):
        body_feats = self.backbone(self.inputs)
Q
qingqing01 已提交
73
        if self.neck is not None:
74 75 76 77 78 79 80 81 82
            body_feats = self.neck(body_feats)
        if self.training:
            rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
            bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num,
                                          self.inputs)
            return rpn_loss, bbox_loss
        else:
            rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
            preds, _ = self.bbox_head(body_feats, rois, rois_num, None)
Q
qingqing01 已提交
83

84 85 86 87
            im_shape = self.inputs['im_shape']
            scale_factor = self.inputs['scale_factor']
            bbox, bbox_num = self.bbox_post_process(preds, (rois, rois_num),
                                                    im_shape, scale_factor)
Q
qingqing01 已提交
88

89 90 91 92
            # rescale the prediction back to origin image
            bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
                                                        im_shape, scale_factor)
            return bbox_pred, bbox_num
Q
qingqing01 已提交
93 94

    def get_loss(self, ):
95
        rpn_loss, bbox_loss = self._forward()
Q
qingqing01 已提交
96
        loss = {}
97 98
        loss.update(rpn_loss)
        loss.update(bbox_loss)
Q
qingqing01 已提交
99 100 101 102 103
        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})
        return loss

    def get_pred(self):
104
        bbox_pred, bbox_num = self._forward()
G
Guanghua Yu 已提交
105
        output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
Q
qingqing01 已提交
106
        return output