gru_unit_op.cc 9.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/gru_unit_op.h"
G
guosheng 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class GRUUnitOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26 27 28 29 30 31 32 33 34 35
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
                   "Input(%s) of GRUUnitOp should not be null.", "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasOutput("Gate"),
                   "Output(%s) of GRUUnitOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasOutput("ResetHiddenPrev"),
G
guosheng 已提交
36
                   "Output(%s) of GRUUnitOp should not be null.",
37 38 39 40 41 42
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(%s) of GRUUnitOp should not be null.", "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
43 44 45 46 47 48 49
    int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
50
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
51 52
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
53
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
54 55
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
56
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
Y
Yang Yang(Tony) 已提交
57
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
58 59 60 61 62 63 64 65
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
    }
66 67 68
    ctx->SetOutputDim("Gate", {batch_size, frame_size * 3});
    ctx->SetOutputDim("ResetHiddenPrev", {batch_size, frame_size});
    ctx->SetOutputDim("Hidden", {batch_size, frame_size});
G
guosheng 已提交
69 70 71 72 73
  }
};

class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
74
  GRUUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker)
G
guosheng 已提交
75
      : OpProtoAndCheckerMaker(proto, op_checker) {
76
    AddInput("Input",
G
guosheng 已提交
77 78
             "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
             "input.");
79
    AddInput("HiddenPrev",
G
guosheng 已提交
80 81
             "(Tensor) Matrix with shape [batch_size, frame_size] for the "
             "states of previous time step.");
K
kexinzhao 已提交
82 83 84 85 86 87 88 89 90 91 92
    AddInput(
        "Weight",
        "(Tensor) Weight matrix with shape [frame_size, frame_size * 3]. "
        "The elements continuous in memory can be divided into two parts. "
        "The first part are weights of the update gate and reset gate "
        "with shape [frame_size, frame_size * 2], and the second part are "
        "weights of output candidate with shape [frame_size, frame_size].");
    AddInput(
        "Bias",
        "(Tensor) Bias vector with shape [1, frame_size * 3] concatenating "
        "bias of the update gate, reset gate and output candidate.")
Y
Yang Yang(Tony) 已提交
93
        .AsDispensable();
94
    AddOutput("Gate",
G
guosheng 已提交
95
              "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the "
K
kexinzhao 已提交
96
              "output of update gate, reset gate and output candidate.")
G
guosheng 已提交
97
        .AsIntermediate();
98
    AddOutput("ResetHiddenPrev",
G
guosheng 已提交
99 100 101
              "(Tensor) Matrix with shape [batch_size, frame_size] for the "
              "reseted hidden state of previous time step.")
        .AsIntermediate();
102
    AddOutput("Hidden",
G
guosheng 已提交
103 104
              "(Tensor) The GRU hidden state of the current time step "
              "with shape [batch_size, frame_size].");
105 106 107 108 109 110 111 112 113 114
    AddAttr<int>("activation",
                 "(enum int, default tanh) "
                 "The activation type used for output candidate {h}_t.")
        .SetDefault(tanh)
        .InEnum({identity, sigmoid, tanh, relu});
    AddAttr<int>("gate_activation",
                 "(enum int, default sigmoid) "
                 "The activation type used in update gate and reset gate.")
        .SetDefault(sigmoid)
        .InEnum({identity, sigmoid, tanh, relu});
G
guosheng 已提交
115
    AddComment(R"DOC(
G
guosheng 已提交
116
GRUUnit Operator implements partial calculations of the GRU unit as following:
K
kexinzhao 已提交
117 118

$$
G
guosheng 已提交
119 120 121 122
update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r)  \\
output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
K
kexinzhao 已提交
123
$$
G
guosheng 已提交
124

G
guosheng 已提交
125 126 127 128
which is same as one time step of GRU Operator.

@note To implement the complete GRU unit, fully-connected operator must be 
used before to feed xu, xr and xc as the Input of GRUUnit operator.
K
kexinzhao 已提交
129

G
guosheng 已提交
130 131 132 133 134 135 136 137
)DOC");
  }
};

class GRUUnitGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

138 139 140 141
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Input");
    PADDLE_ENFORCE(ctx->HasInput("HiddenPrev"),
G
guosheng 已提交
142
                   "Input(%s) of GRUUnitGradOp should not be null.",
143 144 145 146 147 148
                   "HiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Weight");
    PADDLE_ENFORCE(ctx->HasInput("Gate"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Gate");
    PADDLE_ENFORCE(ctx->HasInput("ResetHiddenPrev"),
G
guosheng 已提交
149
                   "Input(%s) of GRUUnitGradOp should not be null.",
150 151 152 153
                   "ResetHiddenPrev");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(%s) of GRUUnitGradOp should not be null.", "Hidden");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
G
guosheng 已提交
154
                   "Input(%s@GRAD) of GRUUnitGradOp should not be null.",
155 156 157 158
                   "Hidden");
    auto input_dims = ctx->GetInputDim("Input");
    auto hidden_prev_dims = ctx->GetInputDim("HiddenPrev");
    auto weight_dims = ctx->GetInputDim("Weight");
G
guosheng 已提交
159 160 161 162 163 164 165
    // int batch_size = input_dims[0];
    int input_size = input_dims[1];
    int frame_size = hidden_prev_dims[1];
    int weight_height = weight_dims[0];
    int weight_width = weight_dims[1];
    PADDLE_ENFORCE_EQ(
        input_size, frame_size * 3,
166
        "The input_size must be 3 times of frame_size in GRUUnitOp.");
G
guosheng 已提交
167 168
    PADDLE_ENFORCE_EQ(
        weight_height, frame_size,
169
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
G
guosheng 已提交
170 171
    PADDLE_ENFORCE_EQ(
        weight_width, frame_size * 3,
172
        "The shape of Weight matrix must be [frame_size, frame_size * 3].");
Y
Yu Yang 已提交
173
    if (ctx->HasInput("Bias")) {
G
guosheng 已提交
174 175 176 177 178 179 180 181 182 183 184
      auto bias_dims = ctx->GetInputDim("Bias");
      int bias_height = bias_dims[0];
      int bias_width = bias_dims[1];
      PADDLE_ENFORCE_EQ(bias_height, 1,
                        "The shape of Bias must be [1, frame_size * 3].");
      PADDLE_ENFORCE_EQ(bias_width, frame_size * 3,
                        "The shape of Bias must be [1, frame_size * 3].");
      auto bias_grad_name = framework::GradVarName("Bias");
      if (ctx->HasOutput(bias_grad_name))
        ctx->SetOutputDim(bias_grad_name, bias_dims);
    }
185
    auto input_grad_name = framework::GradVarName("Input");
G
guosheng 已提交
186 187
    if (ctx->HasOutput(input_grad_name))
      ctx->SetOutputDim(input_grad_name, input_dims);
188
    auto hidden_prev_grad_name = framework::GradVarName("HiddenPrev");
G
guosheng 已提交
189 190
    if (ctx->HasOutput(hidden_prev_grad_name))
      ctx->SetOutputDim(hidden_prev_grad_name, hidden_prev_dims);
191
    auto weight_grad_name = framework::GradVarName("Weight");
G
guosheng 已提交
192 193 194 195 196 197 198 199 200
    if (ctx->HasOutput(weight_grad_name))
      ctx->SetOutputDim(weight_grad_name, weight_dims);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
201
REGISTER_OPERATOR(gru_unit, ops::GRUUnitOp, ops::GRUUnitOpMaker,
202 203
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(gru_unit_grad, ops::GRUUnitGradOp);
G
guosheng 已提交
204
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
205 206 207 208 209 210
    gru_unit, ops::GRUUnitKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUUnitKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    gru_unit_grad,
    ops::GRUUnitGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GRUUnitGradKernel<paddle::platform::CPUDeviceContext, double>);