picodet_esnet.yml 1.2 KB
Newer Older
G
Guanghua Yu 已提交
1
architecture: PicoDet
2
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ESNet_x1_0_pretrained.pdparams
3
export_post_process: False    # Whether post-processing is included in the network when export model.
G
Guanghua Yu 已提交
4 5

PicoDet:
6 7
  backbone: ESNet
  neck: CSPPAN
G
Guanghua Yu 已提交
8 9
  head: PicoHead

10
ESNet:
G
Guanghua Yu 已提交
11
  scale: 1.0
12 13 14
  feature_maps: [4, 11, 14]
  act: hard_swish
  channel_ratio: [0.875, 0.5, 1.0, 0.625, 0.5, 0.75, 0.625, 0.625, 0.5, 0.625, 1.0, 0.625, 0.75]
G
Guanghua Yu 已提交
15

16 17 18 19 20
CSPPAN:
  out_channels: 128
  use_depthwise: True
  num_csp_blocks: 1
  num_features: 4
G
Guanghua Yu 已提交
21 22 23 24

PicoHead:
  conv_feat:
    name: PicoFeat
G
Guanghua Yu 已提交
25 26
    feat_in: 128
    feat_out: 128
27 28
    num_convs: 4
    num_fpn_stride: 4
G
Guanghua Yu 已提交
29 30
    norm_type: bn
    share_cls_reg: True
31
  fpn_stride: [8, 16, 32, 64]
G
Guanghua Yu 已提交
32
  feat_in_chan: 128
G
Guanghua Yu 已提交
33 34 35
  prior_prob: 0.01
  reg_max: 7
  cell_offset: 0.5
36 37
  loss_class:
    name: VarifocalLoss
G
Guanghua Yu 已提交
38
    use_sigmoid: True
39
    iou_weighted: True
G
Guanghua Yu 已提交
40 41 42 43 44 45 46
    loss_weight: 1.0
  loss_dfl:
    name: DistributionFocalLoss
    loss_weight: 0.25
  loss_bbox:
    name: GIoULoss
    loss_weight: 2.0
47 48 49 50
  assigner:
    name: SimOTAAssigner
    candidate_topk: 10
    iou_weight: 6
G
Guanghua Yu 已提交
51 52 53 54 55 56
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6