position_encoding.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn

from ppdet.core.workspace import register, serializable


@register
@serializable
class PositionEmbedding(nn.Layer):
    def __init__(self,
                 num_pos_feats=128,
                 temperature=10000,
                 normalize=True,
                 scale=None,
                 embed_type='sine',
38 39
                 num_embeddings=50,
                 offset=0.):
40 41 42 43
        super(PositionEmbedding, self).__init__()
        assert embed_type in ['sine', 'learned']

        self.embed_type = embed_type
44 45
        self.offset = offset
        self.eps = 1e-6
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
        if self.embed_type == 'sine':
            self.num_pos_feats = num_pos_feats
            self.temperature = temperature
            self.normalize = normalize
            if scale is not None and normalize is False:
                raise ValueError("normalize should be True if scale is passed")
            if scale is None:
                scale = 2 * math.pi
            self.scale = scale
        elif self.embed_type == 'learned':
            self.row_embed = nn.Embedding(num_embeddings, num_pos_feats)
            self.col_embed = nn.Embedding(num_embeddings, num_pos_feats)
        else:
            raise ValueError(f"not supported {self.embed_type}")

    def forward(self, mask):
        """
        Args:
            mask (Tensor): [B, H, W]
        Returns:
            pos (Tensor): [B, C, H, W]
        """
        if self.embed_type == 'sine':
69 70
            y_embed = mask.cumsum(1)
            x_embed = mask.cumsum(2)
71
            if self.normalize:
72 73 74 75
                y_embed = (y_embed + self.offset) / (
                    y_embed[:, -1:, :] + self.eps) * self.scale
                x_embed = (x_embed + self.offset) / (
                    x_embed[:, :, -1:] + self.eps) * self.scale
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

            dim_t = 2 * (paddle.arange(self.num_pos_feats) //
                         2).astype('float32')
            dim_t = self.temperature**(dim_t / self.num_pos_feats)

            pos_x = x_embed.unsqueeze(-1) / dim_t
            pos_y = y_embed.unsqueeze(-1) / dim_t
            pos_x = paddle.stack(
                (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
                axis=4).flatten(3)
            pos_y = paddle.stack(
                (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
                axis=4).flatten(3)
            pos = paddle.concat((pos_y, pos_x), axis=3).transpose([0, 3, 1, 2])
            return pos
        elif self.embed_type == 'learned':
            h, w = mask.shape[-2:]
            i = paddle.arange(w)
            j = paddle.arange(h)
            x_emb = self.col_embed(i)
            y_emb = self.row_embed(j)
            pos = paddle.concat(
                [
                    x_emb.unsqueeze(0).repeat(h, 1, 1),
                    y_emb.unsqueeze(1).repeat(1, w, 1),
                ],
102
                axis=-1).transpose([2, 0, 1]).unsqueeze(0)
103 104 105
            return pos
        else:
            raise ValueError(f"not supported {self.embed_type}")