GemmConvOp.cpp 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ConvOp.h"
16
#include "GemmFunctor.h"
17
#include "Im2Col.h"
18 19 20 21 22
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
23
 * \brief Forward calculation of convolution.
24 25 26 27 28 29 30 31
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
32
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
33 34 35 36 37 38
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

39
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
40 41
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
42
    check(inputs, outputs);
43 44 45 46 47 48 49 50 51 52 53 54
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
55

H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
65 66 67 68

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
69
    bool needIm2col = isNeedIm2col(filter);
70

71 72 73
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

74
    TensorShape colShape;
75
    real* colData = NULL;
76

77
    if (needIm2col) {
78 79 80 81 82 83 84 85
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
86

87 88
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
89 90
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
91 92
    size_t filterOffset = filter.getElements() / groups_;

93
    for (size_t i = 0; i < batchSize; i++) {
94
      for (size_t g = 0; g < groups_; g++) {
95
        if (needIm2col) {
96 97 98 99 100 101 102
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
103 104 105
                 paddingW(),
                 dilationH(),
                 dilationW());
106 107
        } else {
          colData = inputData + g * inputOffset;
108
        }
H
Bug fix  
hedaoyuan 已提交
109
        int M = outputChannels / groups_;
110
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
111
        int K = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
        BlasGemm<Device, real>::compute(false,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        K,
                                        colData,
                                        N,
                                        beta,
                                        outputData + g * outputOffset,
                                        N);
125
      }
H
hedaoyuan 已提交
126 127
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
128
    }
D
dangqingqing 已提交
129 130
#ifdef PADDLE_MOBILE_INFERENCE
    if (Device == DEVICE_TYPE_CPU) {
131
      memory_.reset();
D
dangqingqing 已提交
132 133
    }
#endif
134 135 136
  }
};

H
hedaoyuan 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/*
 * \brief Forward calculation of convolution, optimized for mobile.
 */
template <DeviceType Device>
class GemmConvMobileFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
    bool needIm2col = isNeedIm2col(filter);

    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

    TensorShape colShape;
    real* colData = NULL;

    size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth;
    size_t colWidth = outputHeight * outputWidth;
    // Max col matrix height 256, Max col matrix width 1024
    size_t stepColHeight = std::min(colHeight, (size_t)256);
    size_t stepColWidth = std::min(colWidth, (size_t)2048);

    if (needIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});

      resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real));
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }

    Im2ColFunctor<kCFO, Device, real> im2col;
    GemmFunctor<Device, real> gemm;
    size_t inputOffset = imShape.getElements();
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    int nStride = colWidth;
    int kStride = colHeight;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        if (needIm2col) {
          real beta_ = beta;
          for (size_t colHeightStart = 0; colHeightStart < colHeight;
               colHeightStart += stepColHeight) {
            for (size_t colWidthStart = 0; colWidthStart < colWidth;
                 colWidthStart += stepColWidth) {
              int N = std::min(colWidth - colWidthStart, stepColWidth);
              int K = std::min(colHeight - colHeightStart, stepColHeight);
              // im2col
              im2col(inputData + g * inputOffset,
                     imShape,
                     colData,
                     colShape,
                     strideH(),
                     strideW(),
                     paddingH(),
                     paddingW(),
                     colHeightStart,
                     K,
                     colWidthStart,
                     N);

              // gemm
              int M = outputChannels / groups_;
              gemm(CblasNoTrans,
                   CblasNoTrans,
                   M,
                   N,
                   K,
                   1.0f,
                   filterData + g * filterOffset + colHeightStart,
                   kStride,
                   colData,
                   N,
                   beta_,
                   outputData + g * outputOffset + colWidthStart,
                   nStride);
            }
            beta_ = 1.0;
          }
        } else {
          int M = outputChannels / groups_;
          int N = outputHeight * outputWidth;
          int K = inputChannels / groups_ * filterHeight * filterWidth;
          gemm(CblasNoTrans,
               CblasNoTrans,
               M,
               N,
               K,
               1.0f,
               filterData + g * filterOffset,
               K,
               inputData + g * inputOffset,
               N,
               beta,
               outputData + g * outputOffset,
               N);
        }
      }
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
    }
  }
};

285 286 287 288 289 290 291 292 293 294
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
295
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
296 297 298 299 300 301
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

302 303 304
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
305
    check(inputs, outputs);
H
hedaoyuan 已提交
306 307 308
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
309
    const TensorShape& output = inputs[0].shape();
310
    const TensorShape& filter = inputs[1].shape();
311 312 313 314 315 316
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
317 318
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
319 320 321 322 323 324 325
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();
326
    bool needIm2col = isNeedIm2col(filter);
327

328 329 330
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

331
    TensorShape colShape;
332
    real* colData = NULL;
333

334
    if (needIm2col) {
335 336 337 338 339 340 341 342
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
343

344 345
    Col2ImFunctor<kCFO, Device, real> col2im;
    size_t inputOffset = imShape.getElements();
H
format  
hedaoyuan 已提交
346
    size_t outputOffset =
347 348 349 350 351 352 353 354
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
355
        real scale = 0.0f;
356 357
        if (!needIm2col) {
          colData = inputGrad + g * inputOffset;
358 359
          scale = 1.0f;
        }
H
hedaoyuan 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372
        BlasGemm<Device, real>::compute(true,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        M,
                                        outputGrad + g * outputOffset,
                                        N,
                                        scale,
                                        colData,
                                        N);
373
        if (needIm2col) {
374 375
          col2im(inputGrad + g * inputOffset,
                 imShape,
376
                 colData,
377 378 379 380
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
381 382 383
                 paddingW(),
                 dilationH(),
                 dilationW());
384
        }
385 386 387 388
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
389 390 391 392 393 394 395 396 397 398 399 400 401
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
402
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
403 404 405 406 407 408
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

409 410 411
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
412
    check(inputs, outputs);
413
    const TensorShape& output = inputs[0].shape();
414
    const TensorShape& input = inputs[1].shape();
415 416
    const TensorShape& filter = outputs[0].shape();

417 418 419 420 421 422 423
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

424 425 426 427
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
428 429
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
430 431 432 433 434 435 436
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();
437
    bool needIm2col = isNeedIm2col(filter);
438

439 440 441
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

442
    TensorShape colShape;
443
    real* colData = NULL;
444

445
    if (needIm2col) {
446 447 448 449 450 451 452 453
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
454

455 456
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
457 458 459 460 461
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
462
        if (needIm2col) {
463 464 465 466 467 468 469
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
470 471 472
                 paddingW(),
                 dilationH(),
                 dilationW());
473 474
        } else {
          colData = inputData + g * inputOffset;
475
        }
476 477 478
        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491
        BlasGemm<Device, real>::compute(false,
                                        true,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        outputGrad + g * outputOffset,
                                        K,
                                        colData,
                                        K,
                                        i == 0 ? beta : 1.0f,
                                        filterGrad + g * filterOffset,
                                        N);
492
      }
493 494
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
495
    }
496 497 498
  }
};

H
hedaoyuan 已提交
499 500 501
#ifdef PADDLE_MOBILE_INFERENCE
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction);
#else
502
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
H
hedaoyuan 已提交
503
#endif
504 505
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
506
#ifdef PADDLE_WITH_CUDA
507
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
508 509
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
510
#endif
511 512

}  // namespace paddle