gru_op.h 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#pragma once
16 17 18
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/blas.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/operators/math/detail/activation_functions.h"
T
tensor-tang 已提交
21 22
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
Y
Yi Wang 已提交
23 24 25
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
G
guosheng 已提交
26 27 28 29

namespace paddle {
namespace operators {

G
guosheng 已提交
30 31 32
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
33 34
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
35 36
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
G
guosheng 已提交
37
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
38
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
39
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
40
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
G
guosheng 已提交
41 42
}

Q
QI JUN 已提交
43
template <typename DeviceContext, typename T>
G
guosheng 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
Q
QI JUN 已提交
65 66
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
67
    to_batch(dev_ctx, *input, batch_gate, true, is_reverse);
G
guosheng 已提交
68 69

    if (bias) {
Q
QI JUN 已提交
70
      math::RowwiseAdd<DeviceContext, T> add_bias;
71
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
72 73
    }

74
    int frame_size = hidden_dims[1];
75
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
76 77
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
78
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
79
    Tensor ordered_h0;
D
dzhwinter 已提交
80 81 82

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
83 84 85 86
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
87 88 89
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
G
guosheng 已提交
90
      gru_value.prev_out_value = ordered_h0.data<T>();
G
guosheng 已提交
91
    } else {
G
guosheng 已提交
92
      gru_value.prev_out_value = nullptr;
G
guosheng 已提交
93
    }
G
guosheng 已提交
94 95
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
96 97 98 99
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
T
tensor-tang 已提交
100
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
G
guosheng 已提交
101 102 103 104 105 106 107 108
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
G
guosheng 已提交
109 110 111
      gru_value.output_value = hidden_t.data<T>();
      gru_value.gate_value = gate_t.data<T>();
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
T
tensor-tang 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
      if (gru_value.prev_out_value) {
        blas.GEMM(false, false, cur_batch_size, frame_size * 2, frame_size, 1,
                  gru_value.prev_out_value, frame_size, gru_value.gate_weight,
                  frame_size * 2, 1, gru_value.gate_value, frame_size * 3);
      }

      math::detail::forward_reset_output(
          math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
          cur_batch_size, active_gate);

      if (gru_value.prev_out_value) {
        blas.GEMM(false, false, cur_batch_size, frame_size, frame_size, 1,
                  gru_value.reset_output_value, frame_size,
                  gru_value.state_weight, frame_size, 1,
                  gru_value.gate_value + frame_size * 2, frame_size * 3);
      }

      math::detail::forward_final_output(
          math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
          cur_batch_size, active_node);

G
guosheng 已提交
133
      gru_value.prev_out_value = gru_value.output_value;
G
guosheng 已提交
134 135
    }

Q
QI JUN 已提交
136
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
137
    batch_hidden->set_lod(batch_gate->lod());
138
    to_seq(dev_ctx, *batch_hidden, hidden);
G
guosheng 已提交
139 140 141 142 143 144 145
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

Q
QI JUN 已提交
146
template <typename DeviceContext, typename T>
G
guosheng 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
171
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
172 173 174 175 176
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
177 178
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
179 180 181
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
182

G
guosheng 已提交
183
    Tensor ordered_h0, ordered_h0_grad;
D
dzhwinter 已提交
184 185 186

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
187
    if (h0) {
Q
QI JUN 已提交
188 189
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
190 191 192
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
193 194
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
195 196
    }

G
guosheng 已提交
197 198
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
199
    to_batch(dev_ctx, *hidden_grad, &batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
200

201
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
202 203
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
204 205
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

206
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
207
    if (weight_grad) {
G
guosheng 已提交
208
      gru_grad.gate_weight_grad =
G
guosheng 已提交
209
          weight_grad->mutable_data<T>(context.GetPlace());
210
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
211
      gru_grad.state_weight_grad =
G
guosheng 已提交
212 213
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
214 215
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
216 217 218 219
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
220 221 222 223
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
224 225 226 227 228 229
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
230
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
231
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
232
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
233 234

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
235
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
236
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
237
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
238 239
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
240
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
241
      if (n == 0) {
G
guosheng 已提交
242 243
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
244
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
245 246 247
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
248
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
249
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
250
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
251 252
      }

Q
QI JUN 已提交
253
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
254 255
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
256 257 258
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
259
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
260
      batch_gate_grad.set_lod(batch_gate->lod());
261
      to_seq(dev_ctx, batch_gate_grad, input_grad);
G
guosheng 已提交
262 263 264
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
265
      math::ColwiseSum<DeviceContext, T> col_sum;
266
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
267
    }
G
guosheng 已提交
268
    if (h0 && h0_grad) {
Q
QI JUN 已提交
269 270
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
271
    }
G
guosheng 已提交
272 273 274 275 276 277 278 279 280
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle