distribute_transpiler.py 22.8 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
40 41 42 43 44
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
45
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
46 47
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
48

T
typhoonzero 已提交
49 50
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
51 52
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
71
        # update split_count after aligning
T
typhoonzero 已提交
72 73 74 75 76 77 78 79 80
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
81 82 83 84 85 86 87 88 89
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
90 91
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
92
            to do parameter optimization. And the optimization graph will be put
93
            into a parameter server program.
T
done  
typhoonzero 已提交
94

95
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
96 97 98 99 100
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
101
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
102 103 104 105
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
106
        assert (callable(split_method))
T
done  
typhoonzero 已提交
107 108
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
109
        self.program = program
T
done  
typhoonzero 已提交
110
        self.trainers = trainers
T
typhoonzero 已提交
111
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
112
        # steps to transpile:
113
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
114 115 116
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
117
        # 5. create new program for parameter server.
T
typhoonzero 已提交
118
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
119

T
typhoonzero 已提交
120
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
121 122

        # step1
T
typhoonzero 已提交
123 124
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
125
        # TODO: add split selected rows support
T
typhoonzero 已提交
126 127
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
128
        # step2
T
typhoonzero 已提交
129
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
130 131 132

        # step3
        send_inputs = []
T
typhoonzero 已提交
133
        send_outputs = []
T
typhoonzero 已提交
134 135 136 137
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
138 139
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
140 141 142
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
143 144
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
145
        eplist = split_method(send_inputs, pserver_endpoints)
146
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
147 148 149 150 151 152 153 154
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
155

T
typhoonzero 已提交
156 157 158 159 160 161
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

162
        # create send_op
T
typhoonzero 已提交
163 164 165
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
166 167
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
168
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
169 170 171
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
172 173
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
174 175 176
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
177
                inputs={"X": splited_var},
T
typhoonzero 已提交
178
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
179
                attrs={"axis": 0})
T
typhoonzero 已提交
180 181

    def _create_vars_from_blocklist(self, program, block_list):
182
        # Create respective variables using the block_list
T
typhoonzero 已提交
183
        block_map = dict()
T
typhoonzero 已提交
184
        var_mapping = dict()
T
typhoonzero 已提交
185 186 187 188 189 190 191
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
192 193 194 195
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
196 197 198 199
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
200

T
typhoonzero 已提交
201
            for i, block in enumerate(splited):
T
typhoonzero 已提交
202
                size = block[1]
T
typhoonzero 已提交
203 204 205 206
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
207 208 209 210
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
211
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
212
                var_mapping[varname].append(var)
T
typhoonzero 已提交
213
        return var_mapping
T
done  
typhoonzero 已提交
214 215 216 217 218 219 220 221 222

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
223
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
224 225
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
226

T
typhoonzero 已提交
227
    def _append_split_op(self, program, gradblocks):
228
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
229 230
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
231 232
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
233
                continue
T
typhoonzero 已提交
234
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
235
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
236 237 238 239 240 241 242 243
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
244
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
245 246 247 248 249 250 251 252 253 254 255 256
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
257
        return var_mapping
T
done  
typhoonzero 已提交
258

T
typhoonzero 已提交
259
    def get_trainer_program(self):
T
typhoonzero 已提交
260
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
261 262
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
263

T
done  
typhoonzero 已提交
264
    def _create_var_for_trainers(self, block, var, trainers):
265
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
266 267 268 269 270 271 272 273 274 275
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
276 277 278 279
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
280
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316
    def _is_op_on_pserver(self, endpoint, all_ops, idx):
        """
        Recursively check if the op need to run on current server.
        Assume that ops are in the execution order.
        """
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        op = all_ops[idx]
        if op.inputs.has_key("Param"):
            if op.inputs["Param"].name in param_names:
                return True
            else:
                for n in param_names:
317 318
                    if same_or_split_var(n, op.inputs[
                            "Param"].name) and n != op.inputs["Param"].name:
T
typhoonzero 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                        return True
                return False
        else:
            j = idx - 1
            while j >= 0:
                prev_op = all_ops[j]
                prev_output_names = [o.name for o in prev_op.outputs.values()]
                prev_input_names = [o.name for o in prev_op.inputs.values()]
                found1 = False
                found2 = False
                for _, v in op.inputs.iteritems():
                    if v.name in prev_output_names:
                        found1 = self._is_op_on_pserver(endpoint, all_ops, j)
                # later ops may produce output for prev op's next batch use.
                for _, v in op.outputs.iteritems():
                    if v.name in prev_input_names:
                        found2 = self._is_op_on_pserver(endpoint, all_ops, j)
                if found1 or found2:
                    return True
                j -= 1
            return False

    def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
T
typhoonzero 已提交
342
        new_inputs = dict()
T
typhoonzero 已提交
343 344
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
345 346 347 348
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
349
                    if same_or_split_var(g.name, var.name):
T
typhoonzero 已提交
350 351 352 353 354 355
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
356
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
357 358 359 360 361 362
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
363
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
364 365
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
366 367 368
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
369
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
370 371 372 373
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
374 375 376 377 378
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
379
                    if same_or_split_var(p.name, var.name):
T
typhoonzero 已提交
380 381 382 383
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
384
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
385
                    name=param_block.name,
T
typhoonzero 已提交
386
                    persistable=True,
T
typhoonzero 已提交
387 388
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
389

T
typhoonzero 已提交
390
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
405 406 407 408 409 410 411 412
            # create var in pserver program global block.
            # TODO(typhoonzero): put blocks in one program to avoid create two
            # variables.
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
T
typhoonzero 已提交
413

414
        # change output's ParamOut variable
T
typhoonzero 已提交
415
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
416
        program.global_block().append_op(
T
typhoonzero 已提交
417 418 419 420 421
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
422
    def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
423
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
424
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
425
            program.global_block().create_var(
T
typhoonzero 已提交
426 427 428 429
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
430 431 432 433 434
            pserver_program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
435
        program.global_block().append_op(
T
typhoonzero 已提交
436
            type=opt_op.type,
T
typhoonzero 已提交
437
            inputs=opt_op.inputs,
T
typhoonzero 已提交
438 439 440
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

441
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
442
        """
443
        Get pserver side program using the endpoint
T
typhoonzero 已提交
444 445 446 447 448 449 450 451 452

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
453
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                print("create variable for program: %s.trainer_%d" %
                      (v.name, trainer_id))
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
467 468
        # step6
        optimize_sub_program = Program()
469
        # Iterate through the ops and append ops as needed
470 471 472
        for idx, opt_op in enumerate(self.optimize_ops):
            is_op_on_pserver = self._is_op_on_pserver(endpoint,
                                                      self.optimize_ops, idx)
T
typhoonzero 已提交
473 474
            if not is_op_on_pserver:
                continue
T
typhoonzero 已提交
475
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
476 477
                self._append_pserver_ops(optimize_sub_program, pserver_program,
                                         opt_op, endpoint)
T
typhoonzero 已提交
478
            else:
T
typhoonzero 已提交
479 480
                self._append_pserver_non_opt_ops(optimize_sub_program,
                                                 pserver_program, opt_op)
481
        # Append the recv op
T
done  
typhoonzero 已提交
482 483
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
484
            inputs={},
T
done  
typhoonzero 已提交
485 486
            outputs={},
            attrs={
487
                "OptimizeBlock": optimize_sub_program.global_block(),
T
done  
typhoonzero 已提交
488
                "endpoint": endpoint,
T
typhoonzero 已提交
489 490 491 492 493 494 495 496
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
497
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
498 499 500
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
501

T
typhoonzero 已提交
502
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
503 504 505
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
506
        were split to several blocks.
T
typhoonzero 已提交
507 508 509 510 511 512 513 514
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
515
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
516 517 518
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
519 520
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
521
        created_var_map = dict()
Y
update  
yi.wu 已提交
522
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
523 524
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
525
                persistable=var.persistable,
T
typhoonzero 已提交
526 527 528 529 530 531 532
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_outputs = dict()
Y
update  
yi.wu 已提交
533 534
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
535 536 537
            for key, var in op.outputs.iteritems():
                newname, _ = _get_splited_name_and_shape(var.name)
                if newname:
Y
update  
yi.wu 已提交
538
                    op_on_pserver = True
T
typhoonzero 已提交
539
                    new_outputs[key] = created_var_map[newname]
Y
update  
yi.wu 已提交
540
                elif var.name in pserver_vars:
T
typhoonzero 已提交
541
                    op_on_pserver = True
Y
update  
yi.wu 已提交
542 543
                    new_outputs[key] = pserver_vars[var.name]

T
typhoonzero 已提交
544
            if op_on_pserver:
T
typhoonzero 已提交
545 546 547
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
548
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
549 550 551 552 553 554
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=op.inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog