ppyoloe_op.cpp 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "core/general-server/op/ppyoloe_op.h"
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "core/util/include/timer.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::Timer;
using baidu::paddle_serving::predictor::InferManager;
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::Tensor;

int PPYOLOEOp::inference() {
  VLOG(2) << "Going to run inference";
  const std::vector<std::string> pre_node_names = pre_names();
  if (pre_node_names.size() != 1) {
    LOG(ERROR) << "This op(" << op_name()
               << ") can only have one predecessor op, but received "
               << pre_node_names.size();
    return -1;
  }
  const std::string pre_name = pre_node_names[0];

  const GeneralBlob *input_blob = get_depend_argument<GeneralBlob>(pre_name);
  if (!input_blob) {
    LOG(ERROR) << "input_blob is nullptr,error";
    return -1;
  }
  uint64_t log_id = input_blob->GetLogId();
  VLOG(2) << "(logid=" << log_id << ") Get precedent op name: " << pre_name;

  GeneralBlob *output_blob = mutable_data<GeneralBlob>();
  if (!output_blob) {
    LOG(ERROR) << "output_blob is nullptr,error";
    return -1;
  }
  output_blob->SetLogId(log_id);

  if (!input_blob) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed mutable depended argument, op:" << pre_name;
    return -1;
  }

  const TensorVector *in = &input_blob->tensor_vector;
  TensorVector *out = &output_blob->tensor_vector;

  int batch_size = input_blob->_batch_size;
  output_blob->_batch_size = batch_size;
  VLOG(2) << "(logid=" << log_id << ") infer batch size: " << batch_size;

  Timer timeline;
  int64_t start = timeline.TimeStampUS();
  timeline.Start();

  // only support string type
  char *total_input_ptr = static_cast<char *>(in->at(0).data.data());
  std::string base64str = total_input_ptr;

  cv::Mat img = Base2Mat(base64str);
  cv::cvtColor(img, img, cv::COLOR_BGR2RGB);

  // preprocess
  std::vector<float> input(1 * 3 * im_shape_h * im_shape_w, 0.0f);
  preprocess_det(img, input.data(), scale_factor_h, scale_factor_w, im_shape_h,
                 im_shape_w, mean_, scale_, is_scale_);

  // create real_in
  TensorVector *real_in = new TensorVector();
  if (!real_in) {
    LOG(ERROR) << "real_in is nullptr,error";
    return -1;
  }

  int in_num = 0;
  size_t databuf_size = 0;
  void *databuf_data = NULL;
  char *databuf_char = NULL;

  // image
  in_num = 1 * 3 * im_shape_h * im_shape_w;
  databuf_size = in_num * sizeof(float);

  databuf_data = MempoolWrapper::instance().malloc(databuf_size);
  if (!databuf_data) {
    LOG(ERROR) << "Malloc failed, size: " << databuf_size;
    return -1;
  }

  memcpy(databuf_data, input.data(), databuf_size);
  databuf_char = reinterpret_cast<char *>(databuf_data);
  paddle::PaddleBuf paddleBuf(databuf_char, databuf_size);
  paddle::PaddleTensor tensor_in;
  tensor_in.name = "image";
  tensor_in.dtype = paddle::PaddleDType::FLOAT32;
  tensor_in.shape = {1, 3, im_shape_h, im_shape_w};
  tensor_in.lod = in->at(0).lod;
  tensor_in.data = paddleBuf;
  real_in->push_back(tensor_in);

  // scale_factor
  std::vector<float> scale_factor{scale_factor_h, scale_factor_w};
  databuf_size = 2 * sizeof(float);

  databuf_data = MempoolWrapper::instance().malloc(databuf_size);
  if (!databuf_data) {
    LOG(ERROR) << "Malloc failed, size: " << databuf_size;
    return -1;
  }

  memcpy(databuf_data, scale_factor.data(), databuf_size);
  databuf_char = reinterpret_cast<char *>(databuf_data);
  paddle::PaddleBuf paddleBuf_2(databuf_char, databuf_size);
  paddle::PaddleTensor tensor_in_2;
  tensor_in_2.name = "scale_factor";
  tensor_in_2.dtype = paddle::PaddleDType::FLOAT32;
  tensor_in_2.shape = {1, 2};
  tensor_in_2.lod = in->at(0).lod;
  tensor_in_2.data = paddleBuf_2;
  real_in->push_back(tensor_in_2);

  if (InferManager::instance().infer(engine_name().c_str(), real_in, out,
                                     batch_size)) {
    LOG(ERROR) << "(logid=" << log_id
               << ") Failed do infer in fluid model: " << engine_name().c_str();
    return -1;
  }

  int64_t end = timeline.TimeStampUS();
  CopyBlobInfo(input_blob, output_blob);
  AddBlobInfo(output_blob, start);
  AddBlobInfo(output_blob, end);
  return 0;
}

void PPYOLOEOp::preprocess_det(const cv::Mat &img, float *data,
                                   float &scale_factor_h, float &scale_factor_w,
                                   int im_shape_h, int im_shape_w,
                                   const std::vector<float> &mean,
                                   const std::vector<float> &scale,
                                   const bool is_scale) {
  // scale_factor
  scale_factor_h =
      static_cast<float>(im_shape_h) / static_cast<float>(img.rows);
  scale_factor_w =
      static_cast<float>(im_shape_w) / static_cast<float>(img.cols);

  // Resize
  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(im_shape_w, im_shape_h), 0, 0, 2);

  // Normalize
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  cv::Mat img_fp;
  (resize_img).convertTo(img_fp, CV_32FC3, e);
  for (int h = 0; h < im_shape_h; h++) {
    for (int w = 0; w < im_shape_w; w++) {
      img_fp.at<cv::Vec3f>(h, w)[0] =
          (img_fp.at<cv::Vec3f>(h, w)[0] - mean[0]) / scale[0];
      img_fp.at<cv::Vec3f>(h, w)[1] =
          (img_fp.at<cv::Vec3f>(h, w)[1] - mean[1]) / scale[1];
      img_fp.at<cv::Vec3f>(h, w)[2] =
          (img_fp.at<cv::Vec3f>(h, w)[2] - mean[2]) / scale[2];
    }
  }

  // Permute
  int rh = img_fp.rows;
  int rw = img_fp.cols;
  int rc = img_fp.channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(img_fp, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw),
                       i);
  }
}

cv::Mat PPYOLOEOp::Base2Mat(std::string &base64_data) {
  cv::Mat img;
  std::string s_mat;
  s_mat = base64Decode(base64_data.data(), base64_data.size());
  std::vector<char> base64_img(s_mat.begin(), s_mat.end());
  img = cv::imdecode(base64_img, cv::IMREAD_COLOR); // CV_LOAD_IMAGE_COLOR
  return img;
}

std::string PPYOLOEOp::base64Decode(const char *Data, int DataByte) {
  const char DecodeTable[] = {
      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
      0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
      0,  0,  0,  0,  0,  0,  0,  0,  0,
      62, // '+'
      0,  0,  0,
      63,                                     // '/'
      52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // '0'-'9'
      0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,
      10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'Z'
      0,  0,  0,  0,  0,  0,  26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
      37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // 'a'-'z'
  };

  std::string strDecode;
  int nValue;
  int i = 0;
  while (i < DataByte) {
    if (*Data != '\r' && *Data != '\n') {
      nValue = DecodeTable[*Data++] << 18;
      nValue += DecodeTable[*Data++] << 12;
      strDecode += (nValue & 0x00FF0000) >> 16;
      if (*Data != '=') {
        nValue += DecodeTable[*Data++] << 6;
        strDecode += (nValue & 0x0000FF00) >> 8;
        if (*Data != '=') {
          nValue += DecodeTable[*Data++];
          strDecode += nValue & 0x000000FF;
        }
      }
      i += 4;
    } else // 回车换行,跳过
    {
      Data++;
      i++;
    }
  }
  return strDecode;
}

DEFINE_OP(PPYOLOEOp);

} // namespace serving
} // namespace paddle_serving
} // namespace baidu