test_quantization_pass.py 13.3 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
#     http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.

import unittest
import random
import numpy as np
import paddle.fluid as fluid
import six
W
WangZhen 已提交
20
import paddle
W
WangZhen 已提交
21
from paddle.fluid.framework import Program
22
from paddle.fluid.framework import IrGraph
23
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
W
WangZhen 已提交
24
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
W
WangZhen 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
from paddle.fluid import core


def linear_fc(num):
    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in six.moves.xrange(num):
        hidden = fluid.layers.fc(hidden, size=128, act='relu')
    loss = fluid.layers.cross_entropy(input=hidden, label=label)
    loss = fluid.layers.mean(loss)
    return loss


def residual_block(num):
    def conv_bn_layer(input,
                      ch_out,
                      filter_size,
                      stride,
                      padding,
                      act='relu',
                      bias_attr=False):
        tmp = fluid.layers.conv2d(
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr)
        return fluid.layers.batch_norm(input=tmp, act=act)

    data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    hidden = data
    for _ in six.moves.xrange(num):
        conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
        short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
        hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
    fc = fluid.layers.fc(input=hidden, size=10)
    loss = fluid.layers.cross_entropy(input=fc, label=label)
    loss = fluid.layers.mean(loss)
    return loss


W
WangZhen 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def conv_net(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    return avg_loss


92
class TestQuantizationTransformPass(unittest.TestCase):
W
WangZhen 已提交
93 94 95 96 97 98
    def setUp(self):
        self.quantizable_op_and_inputs = {
            'conv2d': ['Input', 'Filter'],
            'depthwise_conv2d': ['Input', 'Filter'],
            'mul': ['X', 'Y']
        }
99
        self.quantizable_grad_op_inputs = {
W
WangZhen 已提交
100 101 102 103 104
            'conv2d_grad': ['Input', 'Filter'],
            'depthwise_conv2d_grad': ['Input', 'Filter'],
            'mul_grad': ['X', 'Y']
        }

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def check_program(self, transform_pass, program):
        quantized_ops = set()
        for block in program.blocks:
            for op in block.ops:
                # check forward
                if op.type in self.quantizable_op_and_inputs:
                    for arg_name in op.input_arg_names:
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        quantized_ops.add(arg_name)

            for op in block.ops:
                # check backward
                if op.type in self.quantizable_grad_op_inputs:
                    for pname in self.quantizable_grad_op_inputs[op.type]:
                        arg_name = op.input(pname)[0]
                        self.assertTrue(
                            arg_name.endswith('.quantized.dequantized'))
                        self.assertTrue(arg_name in quantized_ops)

W
WangZhen 已提交
125 126 127 128 129 130 131
    def linear_fc_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = linear_fc(3)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
132
        exe = fluid.Executor(fluid.CPUPlace())
133
        graph = IrGraph(core.Graph(main.desc), for_test=False)
134 135 136 137 138
        transform_pass = QuantizationTransformPass(
            scope=fluid.global_scope(),
            program_exe=exe,
            activation_quantize_type=quant_type)
        transform_pass.apply(graph)
W
WangZhen 已提交
139 140 141 142
        marked_nodes = set()
        for op in graph.all_ops():
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
143 144 145
        graph.draw('.', 'quantize_fc_' + quant_type, marked_nodes)
        program = graph.to_program()
        self.check_program(transform_pass, program)
146
        val_graph = IrGraph(core.Graph(program.desc), for_test=False)
147 148 149 150 151
        val_marked_nodes = set()
        for op in val_graph.all_ops():
            if op.name().find('quantize') > -1:
                val_marked_nodes.add(op)
        val_graph.draw('.', 'val_fc_' + quant_type, val_marked_nodes)
W
WangZhen 已提交
152

W
WangZhen 已提交
153
    def no_test_linear_fc_quant_abs_max(self):
W
WangZhen 已提交
154 155 156
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.linear_fc_quant('abs_max')

W
WangZhen 已提交
157
    def no_test_linear_fc_quant_range_abs_max(self):
W
WangZhen 已提交
158 159 160 161 162 163 164 165 166 167
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.linear_fc_quant('range_abs_max')

    def residual_block_quant(self, quant_type):
        main = fluid.Program()
        startup = fluid.Program()
        with fluid.program_guard(main, startup):
            loss = residual_block(2)
            opt = fluid.optimizer.Adam(learning_rate=0.001)
            opt.minimize(loss)
168
        exe = fluid.Executor(fluid.CPUPlace())
169
        graph = IrGraph(core.Graph(main.desc), for_test=False)
170 171 172 173 174
        transform_pass = QuantizationTransformPass(
            scope=fluid.global_scope(),
            program_exe=exe,
            activation_quantize_type=quant_type)
        transform_pass.apply(graph)
W
WangZhen 已提交
175 176 177 178
        marked_nodes = set()
        for op in graph.all_ops():
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
179 180 181
        graph.draw('.', 'quantize_residual_' + quant_type, marked_nodes)
        program = graph.to_program()
        self.check_program(transform_pass, program)
182
        val_graph = IrGraph(core.Graph(program.desc), for_test=False)
183 184 185 186 187
        val_marked_nodes = set()
        for op in val_graph.all_ops():
            if op.name().find('quantize') > -1:
                val_marked_nodes.add(op)
        val_graph.draw('.', 'val_residual_' + quant_type, val_marked_nodes)
W
WangZhen 已提交
188

W
WangZhen 已提交
189
    def no_test_residual_block_abs_max(self):
W
WangZhen 已提交
190 191 192
        self.act_quant_op_type = 'fake_quantize_abs_max'
        self.residual_block_quant('abs_max')

W
WangZhen 已提交
193
    def no_test_residual_block_range_abs_max(self):
W
WangZhen 已提交
194 195 196 197
        self.act_quant_op_type = 'fake_quantize_range_abs_max'
        self.residual_block_quant('range_abs_max')


W
WangZhen 已提交
198 199
class TestQuantizationFreezePass(unittest.TestCase):
    def freeze_graph(self, use_cuda, seed, quant_type):
W
WangZhen 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
W
WangZhen 已提交
225
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
W
WangZhen 已提交
226 227 228

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
W
WangZhen 已提交
229 230 231
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
W
WangZhen 已提交
232
        transform_pass = QuantizationTransformPass(
W
WangZhen 已提交
233 234 235 236
            scope=scope, program_exe=exe, activation_quantize_type=quant_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

W
WangZhen 已提交
237 238
        iters = 5
        batch_size = 8
W
WangZhen 已提交
239
        dev_name = '_gpu_' if use_cuda else '_cpu_'
W
WangZhen 已提交
240 241 242 243 244 245 246 247

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
W
WangZhen 已提交
248
        with fluid.scope_guard(scope):
W
WangZhen 已提交
249 250
            for _ in range(iters):
                data = next(train_reader())
W
WangZhen 已提交
251
                loss_v = exe.run(program=main_graph.to_program(),
W
WangZhen 已提交
252 253
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
W
WangZhen 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
                print('{}: {}'.format(dev_name, loss_v))

        marked_nodes = set()
        for op in main_graph.all_ops():
            if op.name().find('quantize') > -1:
                marked_nodes.add(op)
        main_graph.draw('.', 'main' + dev_name + quant_type, marked_nodes)

        freeze_pass = QuantizationFreezePass(scope=scope, place=place)
        origin_marked_nodes = set()
        for op in test_graph.all_ops():
            if op.name().find('quantize') > -1:
                origin_marked_nodes.add(op)
        test_graph.draw('.', 'test_origin' + dev_name + quant_type,
                        origin_marked_nodes)
        freeze_pass.apply(test_graph)
        freeze_marked_nodes = set()
        for op in test_graph.all_ops():
            if op.name().find('quantize') > -1:
                freeze_marked_nodes.add(op)
        test_graph.draw('.', 'test_freeze' + dev_name + quant_type,
                        freeze_marked_nodes)

    # with fluid.program_guard(test_program):
    #     test_data = next(test_reader())
    #     w_var = fluid.framework._get_var('conv2d_1.w_0.quantized',
    #                                      test_program)
    #     # Testing during training
    #     test_loss1, w_quant = exe.run(program=test_program,
    #                                   feed=feeder.feed(test_data),
    #                                   fetch_list=[loss, w_var])

    #     # Freeze program for inference, but the weight of fc/conv is still float type.
    #     quant_transpiler.freeze_program(test_program, place)
    #     test_loss2, = exe.run(program=test_program,
    #                           feed=feeder.feed(test_data),
    #                           fetch_list=[loss])
    #     self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3)
    #     w_freeze = np.array(fluid.global_scope().find_var('conv2d_1.w_0')
    #                         .get_tensor())
    #     # fail: -432.0 != -433.0, this is due to the calculation precision
    #     #self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))

    #     # Convert parameter to 8-bit.
    #     quant_transpiler.convert_to_int8(test_program, place)
    #     # Save the 8-bit parameter and model file.
    #     fluid.io.save_inference_model('model_8bit', ['image', 'label'],
    #                                   [loss], exe, test_program)
    #     # Test whether the 8-bit parameter and model file can be loaded successfully.
    #     [infer, feed, fetch] = fluid.io.load_inference_model('model_8bit',
    #                                                          exe)
    #     # Check the loaded 8-bit weight.
    #     w_8bit = np.array(fluid.global_scope().find_var('conv2d_1.w_0.int8')
    #                       .get_tensor())

    #     self.assertEqual(w_8bit.dtype, np.int8)
    #     self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))

    def test_freeze_program_cuda_dynamic(self):
        if fluid.core.is_compiled_with_cuda():
            with fluid.unique_name.guard():
                self.freeze_graph(True, seed=1, quant_type='abs_max')

    def test_freeze_program_cpu_dynamic(self):
        with fluid.unique_name.guard():
            self.freeze_graph(False, seed=2, quant_type='abs_max')
W
WangZhen 已提交
320

W
WangZhen 已提交
321
    def test_freeze_program_cuda_static(self):
W
WangZhen 已提交
322 323
        if fluid.core.is_compiled_with_cuda():
            with fluid.unique_name.guard():
W
WangZhen 已提交
324
                self.freeze_graph(True, seed=1, quant_type='range_abs_max')
W
WangZhen 已提交
325

W
WangZhen 已提交
326
    def test_freeze_program_cpu_static(self):
W
WangZhen 已提交
327
        with fluid.unique_name.guard():
W
WangZhen 已提交
328
            self.freeze_graph(False, seed=2, quant_type='range_abs_max')
W
WangZhen 已提交
329 330


W
WangZhen 已提交
331 332
if __name__ == '__main__':
    unittest.main()