nn.py 386.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
X
Xin Pan 已提交
27
from ..imperative import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
X
Xin Pan 已提交
35
from ..imperative import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
S
sneaxiy 已提交
186
    'py_func',
187
    'psroi_pool',
H
heqiaozhi 已提交
188
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
189
    'huber_loss',
Z
zhaozhehao 已提交
190
    'tree_conv',
C
ceci3 已提交
191
    'npair_loss',
Y
Yu Yang 已提交
192 193
]

J
jerrywgz 已提交
194 195
kIgnoreIndex = -100

Y
Yu Yang 已提交
196 197 198 199 200 201 202

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
203
       is_test=False,
204
       name=None):
Y
Yu Yang 已提交
205
    """
206
    **Fully Connected Layer**
Y
Yu Yang 已提交
207

208
    This function creates a fully connected layer in the network. It can take
209
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
210
    Args in detail). It creates a variable called weights for each input tensor,
211 212 213 214
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
215
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
216 217
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
218

219
    When the input is single tensor:
C
caoying03 已提交
220

221 222 223 224 225
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
226 227 228

    .. math::

229
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
230 231 232

    In the above equation:

233 234 235
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
236
    * :math:`b`: The bias parameter created by this layer (if needed).
237
    * :math:`Act`: The activation function.
C
caoying03 已提交
238
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
258
    Args:
R
ranqiu 已提交
259 260 261 262 263 264 265 266 267 268
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
269
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
270 271 272 273
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
274 275
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
276
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
277
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
278
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
279

280
    Returns:
F
fengjiayi 已提交
281
        Variable: The transformation result.
282 283

    Raises:
C
caoying03 已提交
284
        ValueError: If rank of the input tensor is less than 2.
285 286 287 288

    Examples:
        .. code-block:: python

289
          # when input is single tensor
F
fengjiayi 已提交
290
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
291
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
292 293 294 295 296

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
297
    """
C
caoying03 已提交
298

C
caoying03 已提交
299
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
300 301 302 303

    dtype = helper.input_dtype()

    mul_results = []
304 305
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
306 307 308
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
309

Y
Yu Yang 已提交
310
        w = helper.create_parameter(
311
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
312
        tmp = helper.create_variable_for_type_inference(dtype)
313
        helper.append_op(
314 315 316
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
317
            outputs={"Out": tmp},
M
mozga-intel 已提交
318 319
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
320 321 322 323
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
324
    else:
X
Xin Pan 已提交
325
        pre_bias = helper.create_variable_for_type_inference(dtype)
326
        helper.append_op(
327 328 329
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
330
            attrs={"use_mkldnn": False})
331 332 333 334
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
335 336


337 338 339
def embedding(input,
              size,
              is_sparse=False,
340
              is_distributed=False,
341 342 343
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
344
    """
345 346
    **Embedding Layer**

347
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
348 349
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
350 351 352

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
353 354

    Args:
355 356 357 358 359
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
360
        is_distributed(bool): Whether to run lookup table from remote parameter server.
361 362
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
363
            with zeros whenever lookup encounters it in :attr:`input`. If
364
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
365 366
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
367
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
368

369 370 371
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
372

373 374
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
375

C
chengduoZH 已提交
376
          dict_size = len(dataset.ids)
377
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
378
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
379 380 381
    """

    helper = LayerHelper('embedding', **locals())
382
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
383 384
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
385 386
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
387
    tmp = helper.create_variable_for_type_inference(dtype)
388 389
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
390 391 392 393 394
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
395 396 397
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
398
            'remote_prefetch': remote_prefetch,
399 400
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
401 402 403
    return tmp


W
wopeizl 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
420

W
wopeizl 已提交
421 422 423 424 425 426 427 428 429 430 431
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
432

W
wopeizl 已提交
433 434 435 436
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
437

W
wopeizl 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
524 525


P
phlrain 已提交
526 527 528 529 530 531
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
532
         dropout_prob=0.0,
P
phlrain 已提交
533 534 535 536 537
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
538
    """
P
phlrain 已提交
539
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
540 541

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
542
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
543 544
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
545
    .. math::
M
minqiyang 已提交
546 547 548 549 550 551 552

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
553
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
554 555 556 557

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
558 559

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
560 561 562 563 564 565
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
566 567 568
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
569
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
570

M
minqiyang 已提交
571
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
572 573 574 575 576
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
577
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
578 579 580 581 582
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
583
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
584 585
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
586 587
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
588 589 590 591 592 593
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
594
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
595

L
liuhongyu 已提交
596 597

    Returns:
M
minqiyang 已提交
598 599
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
600
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
601

H
haowang101779990 已提交
602 603 604 605
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
606
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
607 608
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
609
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
625
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
626 627 628 629 630 631
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
632 633 634
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
694 695 696 697 698 699 700 701 702 703
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
704
                  proj_activation='tanh',
705
                  dtype='float32',
X
xuezhong 已提交
706 707 708 709 710
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
711 712 713
    """
    **Dynamic LSTMP Layer**

714 715 716 717 718 719
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
720 721 722 723 724

    The formula is as follows:

    .. math::

725
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
726

727
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
728

729
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
730

731
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
732

733
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
734

735
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
736

737
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
738

Y
Yibing Liu 已提交
739 740 741 742 743 744
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
745
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
746
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
747
          bias vector).
Y
Yibing Liu 已提交
748 749 750
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
751
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
752
    * :math:`h`: The hidden state.
753
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
754 755
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
756
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
757
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
758
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
759 760
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
761 762 763 764

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
765

Y
Yibing Liu 已提交
766 767 768 769 770 771 772 773 774 775 776 777
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
778
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
779 780
                               hidden-hidden weight and projection weight.

781 782
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
783 784
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
785 786
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
787
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
788 789 790 791 792

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
793
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
794 795 796 797 798 799
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
800
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
801 802 803
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
804
                                - The shape is (1 x 7D).
C
chengduo 已提交
805 806 807 808 809

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
810 811 812 813 814 815 816 817 818
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
819
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
820 821
                              default "tanh".
        proj_activation(str): The activation for projection output.
822
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
823
                              default "tanh".
Y
Yibing Liu 已提交
824
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
825 826
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
827 828 829 830 831 832 833 834 835 836 837
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
838 839

    Returns:
840 841 842 843
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
844 845

    Examples:
846

Y
Yibing Liu 已提交
847 848
        .. code-block:: python

849 850 851 852
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
853
            hidden_dim, proj_dim = 512, 256
854
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
855
                                     act=None, bias_attr=None)
856 857 858
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
859 860 861 862
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
863
    """
864

C
chengduo 已提交
865
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
866
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
867
    size = size // 4
Y
Yibing Liu 已提交
868 869 870 871 872 873 874 875 876 877
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
878 879 880 881 882 883
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
899

X
xuezhong 已提交
900 901 902 903 904
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
905 906
    helper.append_op(
        type='lstmp',
907
        inputs=inputs,
Y
Yibing Liu 已提交
908 909 910 911 912 913 914 915 916
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
917 918
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
919 920 921 922 923 924 925 926 927
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
928 929 930 931 932 933 934
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
935 936
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
937
    """
938
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
939

940 941 942
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
943

G
guosheng 已提交
944 945 946 947 948 949 950 951 952
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
953

G
guosheng 已提交
954
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
955

Q
Qiao Longfei 已提交
956 957 958

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
959 960 961 962 963 964 965 966 967 968 969 970
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
971
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
972 973
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
974 975 976 977
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
978
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
979 980

    Args:
981 982
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
983
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
984
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
985 986
            is the hidden size.
        size(int): The dimension of the gru cell.
987
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
988 989
            hidden-hidden weight matrix. Note:

990
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
991
              :math:`D` is the hidden size.
992
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
993
              The first part are weights of the update gate and reset gate with
994
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
995
              candidate hidden state with shape :math:`(D \\times D)`.
996 997 998 999 1000

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1001
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1002
            the bias in the update gate, reset gate and candidate calculations.
1003 1004 1005
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1006 1007
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1008
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1009 1010 1011
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1012
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1013
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1014 1015 1016 1017
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1018 1019

    Returns:
G
guosheng 已提交
1020
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1021
            and sequence length is the same with the input.
1022

G
guosheng 已提交
1023
    Examples:
1024

G
guosheng 已提交
1025 1026
        .. code-block:: python

1027 1028 1029 1030
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1031
            hidden_dim = 512
1032
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1033
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1043
    batch_size = input.shape[0]
G
guosheng 已提交
1044
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1045
    if h_0:
G
guosheng 已提交
1046
        assert h_0.shape == (
Y
Yancey 已提交
1047 1048 1049
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1050

X
Xin Pan 已提交
1051 1052 1053 1054
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1068 1069
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1070 1071 1072 1073
        })
    return hidden


Y
Yu Yang 已提交
1074 1075 1076
def gru_unit(input,
             hidden,
             size,
1077 1078
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1079
             activation='tanh',
Q
Qiao Longfei 已提交
1080 1081
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1082
    """
1083 1084 1085
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1086
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1087
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1088

1089 1090
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1091

1092
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1093

1094
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1111 1112

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1113 1114 1115
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1116 1117
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1118 1119
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1120 1121 1122
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1123 1124 1125

    Args:
        input (Variable): The fc transformed input value of current step.
1126
        hidden (Variable): The hidden value of gru unit from previous step.
1127
        size (integer): The input dimension value.
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1142
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1143
            the bias in the update gate, reset gate and candidate calculations.
1144 1145 1146
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1147 1148
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1149 1150 1151 1152
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1153

1154 1155 1156 1157 1158 1159
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1160

1161
             # assuming we have x_t_data and prev_hidden of size=10
1162
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1163 1164
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1177
    size = size // 3
Y
Yu Yang 已提交
1178 1179

    # create weight
1180 1181
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1182

X
Xin Pan 已提交
1183 1184 1185
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1186
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1187
    # create bias
1188
    if helper.bias_attr:
Y
Yu Yang 已提交
1189 1190 1191
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1192
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1193 1194 1195

    helper.append_op(
        type='gru_unit',
1196
        inputs=inputs,
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1203 1204
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1205 1206 1207 1208 1209
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1210
@templatedoc()
1211
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1212 1213 1214 1215 1216 1217 1218
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1219
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1220 1221 1222 1223
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1224 1225 1226
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1227 1228

    """
Y
Yu Yang 已提交
1229 1230 1231 1232 1233 1234
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1235 1236 1237 1238 1239 1240 1241 1242
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1258 1259 1260 1261
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1262

W
wopeizl 已提交
1263 1264
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1265

W
wopeizl 已提交
1266
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1267

W
wopeizl 已提交
1268
        label(${label_type}): ${label_comment}
1269

W
wopeizl 已提交
1270 1271
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1272

W
wopeizl 已提交
1273 1274
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1275

W
wopeizl 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1286
                "Transition": transition,
W
wopeizl 已提交
1287 1288
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1289

W
wopeizl 已提交
1290
    return viterbi_path
Y
Yu Yang 已提交
1291 1292


Y
yi.wu 已提交
1293
@templatedoc()
F
fengjiayi 已提交
1294
def cos_sim(X, Y):
Y
Yu Yang 已提交
1295
    """
Y
yi.wu 已提交
1296 1297 1298
    ${comment}

    Args:
1299 1300
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1301

Y
yi.wu 已提交
1302
    Returns:
1303
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1304
    """
F
fengjiayi 已提交
1305
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1306 1307 1308
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1319 1320 1321 1322 1323
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1324
            dropout_implementation="downgrade_in_infer"):
1325 1326 1327 1328 1329
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1330
    training. The dropout operator randomly sets (according to the given dropout
1331 1332 1333
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1334 1335
    dropout op can be removed from the program to make the program more efficient.

1336
    Args:
1337 1338
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1339 1340 1341 1342 1343 1344 1345
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1346 1347
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1348
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1349 1350

                                           - train: out = input * mask
C
ceci3 已提交
1351
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1352 1353 1354

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1355
                                        2. upscale_in_train, upscale the outcome at training time
1356

H
haowang101779990 已提交
1357 1358
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1359

H
haowang101779990 已提交
1360 1361
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1362

M
minqiyang 已提交
1363

1364
    Returns:
1365
        Variable: A tensor variable is the shape with `x`.
1366 1367

    Examples:
1368

1369 1370
        .. code-block:: python

1371 1372
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1373 1374
    """

F
fengjiayi 已提交
1375
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1376 1377 1378
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1379 1380 1381 1382

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1383 1384 1385 1386 1387
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1388 1389 1390 1391
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1392 1393
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1394
        })
1395 1396 1397
    return out


J
jerrywgz 已提交
1398
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1399
    """
Y
Yibing Liu 已提交
1400 1401
    **Cross Entropy Layer**

1402 1403 1404
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1405 1406

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1407
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1408

Y
Yibing Liu 已提交
1409
        .. math::
Y
yangyaming 已提交
1410

Y
Yibing Liu 已提交
1411 1412 1413
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1414 1415
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1416 1417 1418 1419 1420

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1421
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1422 1423 1424
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1425 1426
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1427
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1428

Y
Yibing Liu 已提交
1429
    Args:
Y
yangyaming 已提交
1430
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1431 1432 1433 1434
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1435
        label (Variable|list): the ground truth which is a 2-D tensor. When
1436 1437 1438 1439
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1440
        soft_label (bool): a flag indicating whether to
1441
                                           interpretate the given labels as soft
1442
                                           labels. Default: `False`.
M
minqiyang 已提交
1443 1444
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1445
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1446 1447 1448 1449 1450

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1451 1452 1453
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1454

H
haowang101779990 已提交
1455 1456
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1457

H
haowang101779990 已提交
1458 1459
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1460 1461 1462 1463 1464 1465

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1466
    """
S
sneaxiy 已提交
1467 1468
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1469
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1470
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1471 1472 1473 1474 1475
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1476 1477
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1478 1479 1480
    return out


S
sneaxiy 已提交
1481 1482 1483 1484
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1485
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1486 1487 1488 1489 1490
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1491
                 'MatchX': [match_x],
S
sneaxiy 已提交
1492 1493 1494 1495 1496
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1497
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1498 1499 1500
    """
    Bayesian Personalized Ranking Loss Operator.

1501
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1502 1503 1504 1505 1506 1507
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1508 1509 1510 1511 1512 1513
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1514 1515
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1516 1517 1518
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1519 1520 1521
    Examples:
        .. code-block:: python

1522
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1523
    """
1524 1525 1526 1527 1528 1529

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1530
                'Label': [label]},
1531 1532 1533 1534
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1535
def square_error_cost(input, label):
Y
Yu Yang 已提交
1536
    """
1537 1538
    **Square error cost layer**

1539 1540
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1555 1556
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1557 1558

    Returns:
G
guosheng 已提交
1559
        Variable: The tensor variable storing the element-wise squared error \
1560
                  difference of input and label.
1561 1562 1563 1564 1565 1566 1567 1568

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1569
    """
F
fengjiayi 已提交
1570
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1571
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1578
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1579
    helper.append_op(
F
fengjiayi 已提交
1580 1581
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1582 1583 1584
    return square_out


Y
yi.wu 已提交
1585
@templatedoc()
Y
Yu Yang 已提交
1586 1587 1588 1589
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1590
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1591
    """
Y
yi.wu 已提交
1592
    **Chunk Evaluator**
Y
yi.wu 已提交
1593

Y
yangyaming 已提交
1594
    This function computes and outputs the precision, recall and
1595
    F1-score of chunk detection.
Y
yi.wu 已提交
1596

M
minqiyang 已提交
1597
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1598
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1599 1600 1601 1602 1603 1604

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1605

Y
yi.wu 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1631

Y
yi.wu 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1656
    Args:
1657 1658 1659 1660 1661
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1662

Y
yi.wu 已提交
1663
    Returns:
Y
update  
yi.wu 已提交
1664 1665 1666
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1667

Y
yi.wu 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1680
    """
F
fengjiayi 已提交
1681
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1682 1683

    # prepare output
X
Xin Pan 已提交
1684 1685 1686 1687 1688 1689 1690
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1691 1692 1693 1694 1695 1696 1697 1698

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1699 1700 1701 1702
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1703 1704 1705
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1706 1707
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1708
        })
1709 1710
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1711 1712


1713
@templatedoc()
Y
Yu Yang 已提交
1714 1715 1716 1717 1718 1719 1720
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1721 1722
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1723 1724 1725 1726
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1727 1728 1729 1730 1731 1732 1733

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1747

1748 1749
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1750 1751 1752 1753 1754 1755 1756
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1757
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1768
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1769 1770 1771 1772 1773 1774
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1775
def sequence_softmax(input, use_cudnn=False, name=None):
1776 1777 1778
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1779
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1796 1797 1798
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1799

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1811 1812
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1813
    softmax_out = helper.create_variable_for_type_inference(dtype)
1814 1815 1816 1817 1818 1819 1820 1821
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1822
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1823
    """
1824
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1825
    has the same shape as the input.
Q
qiaolongfei 已提交
1826

1827 1828 1829 1830 1831 1832
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1833
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1834 1835 1836 1837 1838 1839 1840

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1841
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1842 1843 1844 1845 1846 1847 1848 1849

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1850 1851
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1852 1853
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1866 1867
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1868
    softmax_out = helper.create_variable_for_type_inference(dtype)
1869 1870 1871 1872 1873 1874 1875 1876
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1877 1878 1879
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1880 1881
           stride=1,
           padding=0,
1882
           dilation=1,
Y
Yu Yang 已提交
1883 1884 1885
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1886
           use_cudnn=True,
1887 1888
           act=None,
           name=None):
Y
Yu Yang 已提交
1889
    """
C
chengduoZH 已提交
1890
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1891 1892
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1893
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1894 1895 1896 1897 1898 1899 1900
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1901 1902 1903
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1904

1905
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1906

C
chengduoZH 已提交
1907 1908
    .. math::

C
refine  
chengduoZH 已提交
1909
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1910

T
tensor-tang 已提交
1911
    Where:
C
chengduoZH 已提交
1912

1913 1914 1915 1916 1917
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1918
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1919 1920 1921

    Example:

1922 1923
        - Input:

W
weixing02 已提交
1924
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1925

W
weixing02 已提交
1926
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1927

1928
        - Output:
T
tensor-tang 已提交
1929

W
weixing02 已提交
1930
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1931

C
chengduoZH 已提交
1932
        Where
1933 1934

        .. math::
C
chengduoZH 已提交
1935

W
weixing02 已提交
1936 1937
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1938 1939

    Args:
1940
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1941
        num_filters(int): The number of filter. It is as same as the output
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1959 1960 1961 1962 1963
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1964
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1965 1966 1967 1968 1969
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1970 1971
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1972 1973
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1974
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1975
            will be named automatically. Default: None
C
chengduoZH 已提交
1976 1977

    Returns:
G
guosheng 已提交
1978
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1979 1980
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1981
    Raises:
1982 1983
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1984

C
chengduoZH 已提交
1985 1986 1987
    Examples:
        .. code-block:: python

1988 1989
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1990 1991 1992
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1993
    assert param_attr is not False, "param_attr should not be False here."
1994
    l_type = 'conv2d'
X
xzl 已提交
1995 1996
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1997
        l_type = 'depthwise_conv2d'
1998 1999 2000 2001

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2002 2003 2004 2005 2006
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2007
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2008

C
chengduoZH 已提交
2009 2010 2011
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2012
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2013

C
chengduoZH 已提交
2014 2015
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2016 2017

    input_shape = input.shape
M
minqiyang 已提交
2018
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2019 2020

    def _get_default_param_initializer():
C
chengduo 已提交
2021 2022
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2023 2024 2025 2026 2027 2028 2029 2030
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2031
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2047
    helper.append_op(
2048
        type=l_type,
Y
Yu Yang 已提交
2049 2050 2051 2052 2053
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2054 2055 2056
        attrs={
            'strides': stride,
            'paddings': padding,
2057
            'dilations': dilation,
C
chengduoZH 已提交
2058
            'groups': groups,
2059
            'use_cudnn': use_cudnn,
2060
            'use_mkldnn': False,
2061
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2062
        })
Y
Yu Yang 已提交
2063 2064 2065 2066 2067 2068

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2086 2087 2088 2089 2090 2091
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2101 2102
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2103 2104 2105
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2106
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2132
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2133 2134
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2135
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2136 2137
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2138
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2139 2140
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2141
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2142 2143 2144 2145 2146 2147
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2158 2159
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2160 2161
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2162
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2163
            will be named automatically. Default: None.
C
chengduoZH 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2176 2177
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2178 2179 2180
    """

    l_type = 'conv3d'
C
chengduo 已提交
2181
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2192
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2206 2207 2208
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2209 2210 2211 2212 2213 2214 2215 2216
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2217
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2232
            'use_mkldnn': False
C
chengduoZH 已提交
2233 2234
        })

2235
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2236 2237 2238 2239

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2240
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2241
    """
Y
yangyaming 已提交
2242 2243 2244
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2256
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2257 2258 2259 2260 2261
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2262
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2263 2264 2265 2266 2267 2268 2269

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2270 2271
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2272

L
Luo Tao 已提交
2273 2274
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2275
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2276
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2277
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2278 2279 2280 2281 2282 2283 2284

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2285

Y
yangyaming 已提交
2286
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2287 2288 2289 2290 2291
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2292 2293
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2294
    """
F
fengjiayi 已提交
2295
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2296
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2297 2298
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2299 2300 2301 2302 2303 2304

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2305 2306
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2307

Y
yangyaming 已提交
2308 2309 2310 2311 2312
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2313 2314 2315
    return pool_out


C
add doc  
chengduoZH 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2335
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2336 2337 2338 2339 2340
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2341
def sequence_first_step(input):
L
Luo Tao 已提交
2342
    """
L
Luo Tao 已提交
2343
    This function gets the first step of sequence.
L
Luo Tao 已提交
2344 2345 2346 2347

    .. code-block:: text

       x is a 1-level LoDTensor:
2348
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2349 2350 2351 2352 2353
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2354
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2355
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2356

L
Luo Tao 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2366

Y
yangyaming 已提交
2367
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2368 2369 2370
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2371 2372 2373
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2374
def sequence_last_step(input):
L
Luo Tao 已提交
2375
    """
L
Luo Tao 已提交
2376
    This function gets the last step of sequence.
L
Luo Tao 已提交
2377 2378 2379 2380

    .. code-block:: text

       x is a 1-level LoDTensor:
2381
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2382 2383 2384 2385 2386
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2387
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2388
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2389

L
Luo Tao 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2399

Y
yangyaming 已提交
2400
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2401 2402 2403
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2404 2405 2406
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2407 2408 2409 2410
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2411
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2412 2413 2414 2415 2416
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2417

H
haowang101779990 已提交
2418
              - Case:
Y
Yibing Liu 已提交
2419

2420
            Given the input Variable **input**:
2421

2422 2423 2424
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2425

2426
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2427

2428
            the output Variable will be
2429

2430 2431 2432
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2433

M
minqiyang 已提交
2434
    Note:
H
haowang101779990 已提交
2435
          The first dimension size of **input**, **offset** and **length**
2436
          should be equal. The **offset** should start from 0.
2437

Y
Yibing Liu 已提交
2438
    Args:
2439
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2440
                         sequences.
Y
Yibing Liu 已提交
2441 2442 2443 2444 2445 2446
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2447
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2458
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2459 2460 2461 2462
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2463
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2478
@templatedoc()
Y
Yu Yang 已提交
2479
def pool2d(input,
C
chengduoZH 已提交
2480 2481
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2482 2483
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2484
           global_pooling=False,
C
chengduoZH 已提交
2485
           use_cudnn=True,
2486
           ceil_mode=False,
2487 2488
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2489
    """
F
fengjiayi 已提交
2490
    ${comment}
2491 2492

    Args:
2493 2494 2495
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2496
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2497
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2498 2499
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2500
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2501 2502 2503 2504 2505 2506
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2507 2508 2509
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2510
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2511
                        layer will be named automatically.
2512
        exclusive (bool): Whether to exclude padding points in average pooling
2513
                          mode, default is true
F
fengjiayi 已提交
2514

2515
    Returns:
F
fengjiayi 已提交
2516
        Variable: The pooling result.
F
fengjiayi 已提交
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2529
          pool2d = fluid.layers.pool2d(
2530 2531 2532 2533
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2534
                            global_pooling=False)
Y
Yu Yang 已提交
2535 2536 2537 2538 2539
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2540

C
chengduoZH 已提交
2541 2542 2543 2544 2545
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2546 2547 2548 2549
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2550 2551
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2552

C
Add doc  
chengduoZH 已提交
2553
    l_type = 'pool2d'
2554 2555

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2556
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2557
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2558 2559

    helper.append_op(
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2571 2572
            "use_mkldnn": False,
            "exclusive": exclusive,
2573 2574 2575 2576 2577
        })

    return pool_out


D
dengkaipeng 已提交
2578
@templatedoc()
2579 2580 2581 2582 2583 2584 2585 2586
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2587 2588
           name=None,
           exclusive=True):
2589
    """
2590
    ${comment}
2591 2592

    Args:
D
dengkaipeng 已提交
2593 2594 2595 2596 2597
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2598 2599 2600 2601 2602
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2603 2604 2605 2606 2607 2608 2609
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2610
        exclusive (bool): Whether to exclude padding points in average pooling
2611
                          mode, default is true
2612

2613
    Returns:
2614
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2628 2629 2630 2631 2632
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2633

C
chengduoZH 已提交
2634 2635 2636 2637 2638
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2639 2640 2641
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2642

C
chengduoZH 已提交
2643 2644
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2645

2646 2647
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2648
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2649
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2650 2651

    helper.append_op(
2652
        type=l_type,
Y
Yu Yang 已提交
2653 2654 2655 2656 2657 2658 2659
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2660
            "paddings": pool_padding,
2661
            "use_cudnn": use_cudnn,
2662
            "ceil_mode": ceil_mode,
2663 2664
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2665 2666 2667 2668 2669
        })

    return pool_out


2670 2671 2672 2673 2674 2675 2676
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2677 2678 2679 2680 2681 2682 2683
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2684

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2698 2699 2700 2701 2702 2703 2704 2705 2706

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2707 2708
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2723
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2724
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2725
          # of input data into m * n grids averagely and performs poolings in each
2726 2727
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2728
          #
2729 2730 2731 2732 2733 2734 2735 2736
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2737 2738
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2739
          pool_out = fluid.layers.adaptive_pool2d(
2740 2741
                            input=data,
                            pool_size=[3, 3],
2742
                            pool_type='avg')
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2753
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2779
    return (pool_out, mask) if require_index else pool_out
2780 2781 2782 2783 2784 2785 2786 2787 2788


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2789 2790 2791 2792 2793 2794 2795
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2814 2815 2816

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2817 2818 2819
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2820
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2821
            it must contain three integers, (Depth, Height, Width).
2822
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2823 2824
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2839 2840
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2841
          # of input data into l * m * n grids averagely and performs poolings in each
2842 2843
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2844
          #
2845 2846 2847 2848 2849 2850 2851 2852 2853
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2854
          #                 output[:, :, i, j, k] =
2855 2856
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2857 2858
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2859
          pool_out, mask = fluid.layers.adaptive_pool3d(
2860
                            input=data,
D
dengkaipeng 已提交
2861
                            pool_size=[3, 3, 3],
2862
                            pool_type='avg')
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2873
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2899
    return (pool_out, mask) if require_index else pool_out
2900 2901


Y
Yu Yang 已提交
2902 2903 2904 2905 2906 2907 2908
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2909
               data_layout='NCHW',
Y
Yang Yang 已提交
2910
               in_place=False,
2911 2912
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2913
               moving_variance_name=None,
2914
               do_model_average_for_mean_and_var=False,
2915 2916
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2917
    """
Q
qiaolongfei 已提交
2918 2919 2920 2921
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2922

Q
qiaolongfei 已提交
2923
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2924

Q
qiaolongfei 已提交
2925 2926
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2927 2928 2929
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2956
    Args:
Q
qingqing01 已提交
2957
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2958
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2959 2960 2961 2962 2963 2964 2965 2966 2967
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2968 2969 2970 2971 2972 2973 2974 2975
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2976
        data_layout(string, default NCHW): NCHW|NHWC
2977
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2978 2979 2980 2981
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2982
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2983
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2984 2985 2986 2987 2988
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2989 2990

    Returns:
Q
qiaolongfei 已提交
2991
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2992 2993 2994 2995 2996 2997 2998

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2999
    """
C
chengduo 已提交
3000
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3001 3002 3003
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3004 3005 3006 3007
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3026
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3027

3028 3029
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3030 3031 3032
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3033
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3034
        shape=param_shape,
W
Wu Yi 已提交
3035
        dtype=dtype)
3036 3037 3038 3039 3040 3041
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3042
            trainable=False,
W
wanghaoshuang 已提交
3043
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3044
        shape=param_shape,
W
Wu Yi 已提交
3045
        dtype=dtype)
3046
    variance.stop_gradient = True
Y
Yu Yang 已提交
3047 3048 3049 3050 3051 3052

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3053 3054 3055 3056
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3057

X
Xin Pan 已提交
3058 3059
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3077 3078 3079 3080
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3081
            "data_layout": data_layout,
X
Xin Pan 已提交
3082
            "use_mkldnn": False,
3083 3084
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3085
        })
Y
Yu Yang 已提交
3086 3087 3088 3089

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3209
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3210 3211 3212 3213

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3214
@templatedoc()
G
guosheng 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3225
    ${comment}
G
guosheng 已提交
3226 3227 3228

    The formula is as follows:

Y
yuyang18 已提交
3229
    ..  math::
G
guosheng 已提交
3230 3231 3232 3233 3234 3235 3236

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3237 3238 3239 3240 3241 3242 3243 3244
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3245

G
guosheng 已提交
3246 3247
    Args:
        input(Variable): The input tensor variable.
3248
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3249
            normalization. Default True.
3250
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3251 3252
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3253
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3254
            Default 1.
3255
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3256
            division by zero. Default 1e-05.
G
guosheng 已提交
3257
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3258 3259
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3260 3261
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3262
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3263 3264
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3265
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3266
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3267
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3268 3269 3270
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3271 3272

    Returns:
Y
yuyang18 已提交
3273
        ${y_comment}
G
guosheng 已提交
3274 3275 3276

    Examples:

Y
yuyang18 已提交
3277 3278 3279
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3295
    if shift:
G
guosheng 已提交
3296 3297 3298 3299 3300 3301
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3302 3303 3304 3305 3306
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3334
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3382 3383
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3401
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3402 3403 3404
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3405
    This layer calculates the spectral normalization value of weight parameters of
3406
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3407
    Parameters. Calculations are showed as follows.
3408

D
dengkaipeng 已提交
3409 3410 3411
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3412
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3425
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3426 3427 3428 3429

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3430

D
dengkaipeng 已提交
3431
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3432 3433
                

D
dengkaipeng 已提交
3434 3435 3436 3437
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3438 3439 3440
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3441 3442 3443
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3444
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3445 3446 3447 3448 3449 3450 3451 3452

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3453
    dtype = weight.dtype
D
dengkaipeng 已提交
3454 3455 3456

    # create intput and parameters
    inputs = {'Weight': weight}
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3475 3476

    # create output
3477
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3478 3479

    helper.append_op(
3480
        type="spectral_norm",
D
Dun 已提交
3481
        inputs=inputs,
3482 3483 3484 3485 3486 3487
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3488

3489
    return out
D
Dun 已提交
3490 3491


Y
Yu Yang 已提交
3492 3493 3494 3495
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3496 3497 3498
                     padding=0,
                     stride=1,
                     dilation=1,
3499
                     groups=None,
C
caoying03 已提交
3500
                     param_attr=None,
3501
                     bias_attr=None,
C
chengduoZH 已提交
3502
                     use_cudnn=True,
3503
                     act=None,
C
caoying03 已提交
3504
                     name=None):
Y
Yu Yang 已提交
3505
    """
3506 3507 3508 3509 3510 3511 3512 3513
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3514 3515
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3516 3517 3518
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3519 3520 3521 3522 3523

    For each input :math:`X`, the equation is:

    .. math::

3524
        Out = \sigma (W \\ast X + b)
3525

3526
    Where:
3527 3528 3529

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3530 3531 3532 3533
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3534

3535 3536 3537 3538
    Example:

        - Input:

3539
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3540

3541
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3542 3543 3544

        - Output:

3545
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3546 3547

        Where
Y
Yu Yang 已提交
3548

3549 3550
        .. math::

3551 3552
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3553 3554
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3555 3556

    Args:
3557 3558 3559 3560
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3561 3562 3563 3564
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3593
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3594 3595 3596
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3597
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3598
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3599 3600

    Returns:
3601
        Variable: The tensor variable storing the convolution transpose result.
3602 3603

    Raises:
3604 3605
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3606 3607 3608 3609

    Examples:
       .. code-block:: python

3610 3611
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3612
    """
C
chengduo 已提交
3613
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3614 3615 3616 3617 3618 3619 3620 3621
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3622 3623 3624
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3625 3626 3627
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3628

C
chengduoZH 已提交
3629 3630
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3631

Y
Yu Yang 已提交
3632 3633 3634 3635 3636
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3637

Y
Yu Yang 已提交
3638 3639
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3640

C
chengduoZH 已提交
3641
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3642
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3643
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3644
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3645
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3646 3647 3648
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3649

3650 3651 3652 3653 3654 3655 3656
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3657
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3658
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3659

Y
Yu Yang 已提交
3660 3661 3662
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3663
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3664
    helper.append_op(
3665
        type=op_type,
Y
Yu Yang 已提交
3666 3667
        inputs={'Input': [input],
                'Filter': [img_filter]},
3668
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3669
        attrs={
3670
            'output_size': output_size,
3671 3672 3673 3674 3675
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3676 3677
        })

3678 3679 3680
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3681 3682


3683
def conv3d_transpose(input,
Y
Yu Yang 已提交
3684 3685 3686
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3687 3688 3689
                     padding=0,
                     stride=1,
                     dilation=1,
3690
                     groups=None,
C
caoying03 已提交
3691
                     param_attr=None,
3692
                     bias_attr=None,
C
chengduoZH 已提交
3693
                     use_cudnn=True,
3694
                     act=None,
C
caoying03 已提交
3695
                     name=None):
Y
Yu Yang 已提交
3696
    """
3697
    **Convlution3D transpose layer**
3698

3699
    The convolution3D transpose layer calculates the output based on the input,
3700
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3701 3702 3703 3704 3705 3706
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3707 3708 3709
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3710 3711 3712 3713 3714

    For each input :math:`X`, the equation is:

    .. math::

3715
        Out = \sigma (W \\ast X + b)
3716 3717 3718

    In the above equation:

3719 3720
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3721 3722 3723 3724
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3725

3726 3727 3728 3729
    Example:

        - Input:

3730
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3731

3732
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3733 3734 3735

        - Output:

3736
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3737 3738

        Where
Y
Yu Yang 已提交
3739

3740 3741
        .. math::

3742 3743 3744
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3745 3746

    Args:
3747
        input(Variable): The input image with [N, C, D, H, W] format.
3748 3749 3750
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3751
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3752 3753
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3754
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3755 3756 3757
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3758 3759
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3760
        stride(int|tuple): The stride size. If stride is a tuple, it must
3761 3762
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3763
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3764 3765 3766
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3767 3768 3769 3770 3771
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3772 3773 3774 3775 3776 3777 3778 3779 3780
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3781 3782
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3783 3784
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3785 3786
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3787 3788

    Returns:
3789
        Variable: The tensor variable storing the convolution transpose result.
3790 3791

    Raises:
3792 3793
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3794 3795 3796 3797

    Examples:
       .. code-block:: python

3798 3799
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3800
    """
C
chengduo 已提交
3801
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3802 3803
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3804
    if not isinstance(input, Variable):
3805
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3806 3807
    input_channel = input.shape[1]

3808 3809 3810
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3811

C
chengduoZH 已提交
3812 3813 3814
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3815 3816 3817 3818 3819 3820
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3821 3822 3823
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3824

3825
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3826
                         padding[0] - 1) // dilation[0] + 1
3827
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3828
                         padding[1] - 1) // dilation[1] + 1
3829
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3830
                         padding[2] - 1) // dilation[2] + 1
3831
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3832
    else:
3833 3834
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3835

3836
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3837
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3838 3839 3840
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3841
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3842
    helper.append_op(
3843
        type=l_type,
Y
Yu Yang 已提交
3844 3845
        inputs={'Input': [input],
                'Filter': [img_filter]},
3846
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3847 3848 3849 3850
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3851
            'groups': groups,
C
chengduoZH 已提交
3852 3853
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3854

3855 3856
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3857
    return out
Y
yangyaming 已提交
3858 3859


Y
yangyaming 已提交
3860
def sequence_expand(x, y, ref_level=-1, name=None):
3861
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3862 3863 3864 3865
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3866 3867 3868 3869 3870

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3871
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3872
                x.data = [[a], [b], [c], [d]]
3873 3874 3875
                x.dims = [4, 1]

            y is a LoDTensor:
3876 3877
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3878

Y
yangyaming 已提交
3879
            ref_level: 0
3880

Y
yangyaming 已提交
3881
            then output is a 1-level LoDTensor:
3882
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3883
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3884 3885 3886 3887
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3888
                x.data = [[a], [b], [c]]
3889 3890 3891
                x.dims = [3, 1]

            y is a LoDTensor:
3892
                y.lod = [[2, 0, 3]]
3893

Y
yangyaming 已提交
3894
            ref_level: -1
3895

Y
yangyaming 已提交
3896 3897 3898
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3899 3900 3901
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3902 3903
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3904
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3905
                        will be named automatically.
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3916
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3917
    """
Y
yangyaming 已提交
3918
    helper = LayerHelper('sequence_expand', input=x, **locals())
3919
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3920
    tmp = helper.create_variable_for_type_inference(dtype)
3921
    helper.append_op(
Y
yangyaming 已提交
3922 3923 3924 3925 3926
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3927
    return tmp
3928 3929


C
chengduo 已提交
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3986
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3987 3988 3989 3990 3991 3992 3993 3994
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3995
@templatedoc()
3996
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3997 3998 3999 4000 4001
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4002 4003 4004
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4005
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4006 4007 4008 4009
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4010 4011 4012
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4013

F
fengjiayi 已提交
4014
    Returns:
M
minqiyang 已提交
4015
        Variable: The padded sequence batch and the original lengths before
4016
                  padding. All sequences has the same length.
M
minqiyang 已提交
4017

F
fengjiayi 已提交
4018 4019 4020 4021 4022 4023 4024
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4025
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4026
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4027 4028 4029 4030 4031
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4032 4033
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4034 4035 4036 4037

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4038 4039 4040 4041 4042 4043
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4044 4045
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4046
        attrs={'padded_length': maxlen})
4047
    return out, length
F
fengjiayi 已提交
4048 4049


4050
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4051
    """
4052
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4053

4054 4055
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4065 4066 4067
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4068
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4069 4070 4071 4072 4073 4074

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4075
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4076 4077 4078 4079 4080 4081

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4082 4083
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4098
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4110 4111 4112 4113 4114 4115 4116
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4117
                is_accumulated=True,
4118 4119
                name=None,
                return_parent_idx=False):
4120
    """
4121 4122
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4123 4124 4125

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4126 4127

    This layer does the search in beams for one time step. Specifically, it
4128 4129 4130
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4142 4143 4144 4145

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4146

4147
    Args:
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4171 4172
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4173 4174
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4175 4176 4177 4178
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4179

4180
    Returns:
4181 4182 4183 4184
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4185 4186 4187 4188

    Examples:
        .. code-block:: python

4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4206
    helper = LayerHelper('beam_search', **locals())
4207 4208 4209 4210 4211 4212
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4213

X
Xin Pan 已提交
4214 4215 4216
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4217 4218 4219 4220 4221
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4222 4223 4224

    helper.append_op(
        type='beam_search',
4225
        inputs=inputs,
Q
Qiao Longfei 已提交
4226 4227 4228
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4229
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4230 4231 4232 4233 4234 4235
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4236
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4237
        })
4238 4239 4240 4241
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4242 4243


4244 4245 4246 4247 4248 4249 4250
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4251

4252 4253 4254 4255 4256 4257 4258 4259 4260
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4261

4262 4263 4264 4265 4266 4267
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4268

4269 4270
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4271

4272 4273 4274 4275 4276 4277
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4278 4279
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4295 4296 4297 4298
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4299
              param_attr=None,
C
caoying03 已提交
4300 4301
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4302 4303 4304 4305
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4306
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4307

4308
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4309

4310
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4311

4312
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4313 4314 4315

            h_t & = o_t tanh(c_t)

4316 4317 4318 4319 4320 4321
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4322 4323 4324

        .. math::

4325
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4326 4327 4328 4329 4330 4331 4332 4333

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4334
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4335 4336

    Args:
Y
yangyaming 已提交
4337 4338 4339 4340 4341 4342
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4343
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4356 4357
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4358 4359

    Returns:
Y
yangyaming 已提交
4360
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4361 4362

    Raises:
4363 4364 4365 4366
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4367 4368 4369 4370 4371 4372

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4373
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4374
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4375
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4392
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4393 4394 4395 4396
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4397 4398
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4399 4400 4401
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4402
    size = cell_t_prev.shape[1]
4403
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4404 4405
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4406
                param_attr=param_attr,
4407
                bias_attr=bias_attr)
Y
yangyaming 已提交
4408
    dtype = x_t.dtype
X
Xin Pan 已提交
4409 4410
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4420
    return h, c
G
guosheng 已提交
4421 4422


C
caoying03 已提交
4423
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4424
    """
Y
yangyaming 已提交
4425
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4426 4427 4428

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4429
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4430 4431
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4432 4433
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4434
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4435
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4436
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4437 4438
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4439 4440 4441

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4442

G
guosheng 已提交
4443 4444 4445 4446 4447 4448
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4449
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4450 4451 4452 4453
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4454 4455 4456 4457

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4458
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4459 4460 4461
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4462 4463
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4464
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4465 4466
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4467 4468 4469 4470 4471
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4472
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4473 4474 4475 4476
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4477 4478


C
caoying03 已提交
4479
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4480
    """
Y
Yibing Liu 已提交
4481
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4482 4483 4484

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4485 4486 4487
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4488
            must be in the range :math:`[-rank(input), rank(input))`. If
4489
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4490
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4491 4492
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4493
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4494
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4495
                       will be named automatically.
G
guosheng 已提交
4496 4497

    Returns:
Y
Yibing Liu 已提交
4498
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4499

G
guosheng 已提交
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4510 4511
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4512 4513 4514 4515 4516 4517 4518

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4519 4520
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4521
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4522 4523
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4524 4525 4526 4527 4528
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4529
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4530 4531 4532 4533
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4534 4535


C
caoying03 已提交
4536
def reduce_max(input, dim=None, keep_dim=False, name=None):
4537
    """
Y
yangyaming 已提交
4538
    Computes the maximum of tensor elements over the given dimension.
4539 4540 4541

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4542
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4543 4544 4545
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4546
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4547 4548
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4549
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4550 4551
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4552 4553 4554

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4555

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4567 4568 4569 4570 4571 4572 4573

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4574 4575
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4576
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4577 4578
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4579 4580 4581 4582 4583
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4584
            'dim': dim if dim != None else [0],
4585 4586 4587 4588 4589 4590
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4591
def reduce_min(input, dim=None, keep_dim=False, name=None):
4592
    """
Y
yangyaming 已提交
4593
    Computes the minimum of tensor elements over the given dimension.
4594 4595 4596

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4597
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4598 4599 4600
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4601
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4602 4603
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4604
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4605 4606
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4607 4608 4609

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4610

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4622 4623 4624 4625 4626 4627 4628

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4629 4630
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4631
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4632 4633
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4634 4635 4636 4637 4638
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4639
            'dim': dim if dim != None else [0],
4640 4641 4642 4643
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4644 4645


4646 4647 4648 4649 4650 4651
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4652
        dim (list|int|None): The dimensions along which the product is performed. If
4653 4654
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4655 4656
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4657 4658 4659
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4660
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4661
            layer will be named automatically.
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4676
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4677
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4678 4679 4680 4681 4682 4683 4684

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4685 4686
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4687
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4688 4689
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4690 4691 4692 4693 4694
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4695
            'dim': dim if dim != None else [0],
4696 4697 4698 4699 4700 4701
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4702
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4703
    """
C
caoying03 已提交
4704
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4705 4706 4707

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4708 4709 4710 4711 4712
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4713
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4714
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4715
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4716 4717
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4718 4719

    Returns:
D
dzhwinter 已提交
4720
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4721 4722 4723 4724 4725 4726 4727 4728 4729

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4730 4731
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4747
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4770
    .. math::
4771 4772

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4773 4774 4775 4776 4777

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4778
        x(Variable|list): The input tensor to l2_normalize layer.
4779
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4780 4781
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4782
        epsilon(float): The epsilon value is used to avoid division by zero, \
4783
            the defalut value is 1e-10.
4784
        name(str|None): A name for this layer(optional). If set None, the layer \
4785
            will be named automatically.
C
caoying03 已提交
4786 4787

    Returns:
4788
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4789 4790

    Examples:
4791

C
caoying03 已提交
4792 4793
        .. code-block:: python

4794 4795 4796 4797
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4798 4799
    """

F
fengjiayi 已提交
4800 4801
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4802 4803
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4804 4805
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4806
    helper.append_op(
4807 4808 4809 4810
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4811
        attrs={
4812 4813
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4814 4815
        })
    return out
4816 4817


S
sneaxiy 已提交
4818
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4819
    """
Y
ying 已提交
4820 4821 4822 4823
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4824

C
chengduoZH 已提交
4825
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4826
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4827

4828 4829 4830 4831 4832
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4833
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4834

C
chengduoZH 已提交
4835
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4836
      performs in the following way.
G
guosheng 已提交
4837

4838
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4839
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4840
        last two dimensions and a batched matrix multiply supporting broadcast
4841
        applies on the two tensors.
G
guosheng 已提交
4842

Y
ying 已提交
4843 4844
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4845
    removed after matrix multiplication.
G
guosheng 已提交
4846 4847 4848

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4849 4850 4851
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4852
        alpha (float): The scale of output. Default 1.0.
4853
        name(str|None): A name for this layer(optional). If set None, the layer
4854
            will be named automatically.
G
guosheng 已提交
4855 4856

    Returns:
4857
        Variable: The product Tensor variable.
G
guosheng 已提交
4858

G
guosheng 已提交
4859 4860 4861
    Examples:
        .. code-block:: python

4862
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4863 4864
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4865

4866 4867
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4868

4869 4870
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4871

4872 4873
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4874 4875 4876 4877

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4878 4879
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4880

Y
ying 已提交
4881
            # x: [M], y: [N]
4882
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4883
    """
Y
ying 已提交
4884 4885 4886 4887 4888 4889 4890

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4891
            y_shape = y_shape + [1]
Y
ying 已提交
4892 4893 4894 4895 4896 4897 4898

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4899 4900
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4901

C
chengduo 已提交
4902
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4903
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4904 4905 4906
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4907
                if dim_x != y_shape[i]:
C
chengduo 已提交
4908 4909
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4910 4911 4912

    __check_input(x, y)

4913
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4914
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4915
    helper.append_op(
4916 4917 4918 4919
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4920 4921 4922
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4923
            'alpha': float(alpha),
S
sneaxiy 已提交
4924
        })
4925
    return out
4926 4927


4928
def topk(input, k, name=None):
Q
qingqing01 已提交
4929 4930 4931 4932
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4933
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4934 4935 4936 4937 4938 4939
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4961 4962 4963
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4964
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4965
                 of input.
4966
        name(str|None): A name for this layer(optional). If set None, the layer
4967
                       will be named automatically.
F
fengjiayi 已提交
4968
                       Default: None
Q
qingqing01 已提交
4969 4970

    Returns:
4971 4972 4973
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4974
        within the last dimension of input.
Q
qingqing01 已提交
4975

F
fengjiayi 已提交
4976 4977
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4978 4979 4980 4981 4982 4983 4984

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4985 4986
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4987 4988 4989 4990 4991 4992
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4993 4994
    helper.append_op(
        type="top_k",
W
whs 已提交
4995
        inputs=inputs,
Q
qingqing01 已提交
4996 4997
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4998
        attrs=attrs)
Q
qingqing01 已提交
4999 5000 5001 5002 5003
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5004
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5005
    """
Y
ying 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5015

Y
ying 已提交
5016
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5017

5018
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5019 5020
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5021
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5022

5023
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5024 5025
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5026

5027 5028 5029
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5030
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5031
                          the length of reference string.
5032
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5033
                                     calculating edit distance.
5034
        name (str): The name of this layer. It is optional.
5035

W
wanghaoshuang 已提交
5036
    Returns:
W
wanghaoshuang 已提交
5037
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5038 5039 5040 5041

    Examples:
        .. code-block:: python

T
tink2123 已提交
5042 5043
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5044
            cost = fluid.layers.edit_distance(input=x,label=y)
5045
    """
5046
    helper = LayerHelper("edit_distance", **locals())
5047

5048
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5049
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5050 5051
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5052 5053 5054 5055 5056

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5057
            attrs={"tokens": ignored_tokens})
5058 5059 5060 5061 5062
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5063
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5064
            attrs={"tokens": ignored_tokens})
5065 5066
        label = erased_label

5067
    # edit distance op
X
Xin Pan 已提交
5068 5069
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5070 5071 5072 5073
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5074 5075
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5076 5077
        attrs={"normalized": normalized})

5078
    return edit_distance_out, sequence_num
5079 5080 5081 5082 5083


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5084

Y
ying 已提交
5085 5086 5087 5088
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5106
        input.lod = [[4, 4]]
M
minqiyang 已提交
5107

W
whs 已提交
5108
        Computation:
5109

W
whs 已提交
5110 5111 5112 5113 5114 5115
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5116 5117 5118 5119 5120

        output.data = [[2],
                       [1],
                       [3]]

5121
        output.lod = [[2, 1]]
5122

W
whs 已提交
5123

5124 5125
    Args:

Y
ying 已提交
5126 5127 5128 5129 5130 5131 5132 5133 5134
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5135
        name (str): The name of this layer. It is optional.
5136 5137

    Returns:
H
haowang101779990 已提交
5138 5139 5140
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5141
                  LoD [[]] and dims [1, 1].
5142 5143 5144 5145 5146

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5147

5148
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5149
    """
5150
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5151
    _, topk_indices = topk(input, k=1)
5152 5153

    # ctc align op
X
Xin Pan 已提交
5154
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5155 5156 5157
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5158
        outputs={"Output": [ctc_out]},
5159 5160
        attrs={"merge_repeated": True,
               "blank": blank})
5161
    return ctc_out
5162 5163


W
Wu Yi 已提交
5164
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5165
    """
5166 5167
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5168
    to compute Connectionist Temporal Classification (CTC) loss.
5169 5170
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5171 5172 5173
    input tensor.

    Args:
5174
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5175 5176 5177 5178
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5179
       label (Variable): The ground truth of variable-length sequence,
5180 5181 5182
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5183 5184
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5185 5186 5187
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5188
         follewed by a mean_op.
W
Wu Yi 已提交
5189
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5190 5191

    Returns:
5192 5193
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5194 5195

    Examples:
5196

W
wanghaoshuang 已提交
5197
        .. code-block:: python
5198

5199 5200 5201
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5202 5203

    """
F
fengjiayi 已提交
5204
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5205 5206
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5207 5208 5209 5210 5211 5212
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5213 5214 5215 5216 5217
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5218
    return loss_out
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5234 5235 5236
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5237 5238 5239 5240 5241
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5242

5243
            out.lod  = [[0, 1, 3]]
5244 5245 5246 5247

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5248 5249 5250 5251 5252 5253 5254
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5255 5256 5257

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5258 5259

    Returns:
5260

5261 5262 5263 5264 5265
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5266
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5267
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5268 5269
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5270
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5271 5272 5273 5274 5275 5276
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5277 5278


5279 5280 5281 5282
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5283 5284 5285 5286 5287 5288
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5289
        num_neg_samples=None,
5290 5291 5292
        name=None,
        sampler="uniform",
        custom_dist=None,
5293 5294
        seed=0,
        is_sparse=False):
5295 5296 5297 5298 5299 5300 5301
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5302 5303
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5304
            sample is 1.0.
C
chengduo 已提交
5305 5306 5307 5308 5309 5310 5311 5312 5313
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5314
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5315 5316
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5317 5318 5319
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5320
        custom_dist (float[]): A float[] with size=num_total_classes.
5321 5322 5323 5324
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5325
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5326

5327
    Returns:
Y
Yibing Liu 已提交
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5355 5356 5357 5358 5359 5360 5361 5362 5363

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5364

5365
    """
Y
Yang Yu 已提交
5366 5367 5368
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5369 5370

    dim = input.shape[1]
Y
Yang Yu 已提交
5371 5372 5373 5374 5375 5376
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5377
    inputs = {}
C
chengduo 已提交
5378 5379 5380 5381 5382 5383 5384
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5385 5386 5387
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5388

5389 5390 5391 5392
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5393 5394 5395 5396 5397 5398 5399

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5400 5401 5402 5403 5404 5405 5406 5407 5408
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5409
            if normal_prob - 1.0 > 0:
5410
                bigs.append((i, normal_prob))
5411
            elif 1.0 - normal_prob > 0:
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5427
            if big_left - 1.0 > 0:
5428
                bigs.append((big_idx, big_left))
5429
            elif 1.0 - big_left > 0:
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5459 5460 5461 5462
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5463 5464 5465 5466 5467
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5468 5469 5470 5471
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5472

Y
Yang Yu 已提交
5473 5474
    attrs = {
        'num_total_classes': int(num_total_classes),
5475 5476
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5477
        'sampler': sampler,
5478 5479
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5480
    }
Y
Yang Yu 已提交
5481 5482 5483

    helper.append_op(
        type='nce',
C
chengduo 已提交
5484
        inputs=inputs,
Y
Yang Yu 已提交
5485 5486 5487 5488 5489 5490
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5491
    return cost / (num_neg_samples + 1)
5492 5493


C
chengduo 已提交
5494 5495
def hsigmoid(input,
             label,
5496
             num_classes,
C
chengduo 已提交
5497 5498
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5499
             name=None,
5500 5501 5502
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5503
             is_sparse=False):
W
weixing02 已提交
5504 5505
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5506
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5507
    complete binary tree, or you can use is_custom to pass your own tree to
5508
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5509 5510 5511 5512 5513 5514
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5515
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5516
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5517

5518 5519
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5520 5521 5522 5523
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5524
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5525
       related to the same batch of inputs.
5526

W
weixing02 已提交
5527
    Args:
M
minqiyang 已提交
5528
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5529 5530 5531 5532
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5533 5534
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5535
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5547
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5548
            it should be in leaf -> root order
M
minqiyang 已提交
5549 5550 5551
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5552
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5553
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5554
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5555
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5556
             of W and input will be sparse.
W
weixing02 已提交
5557 5558

    Returns:
J
JiabinYang 已提交
5559
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5560 5561 5562 5563 5564

    Examples:

        .. code-block:: python

G
guosheng 已提交
5565 5566 5567
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5568 5569 5570 5571
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5572 5573
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5574
    dim = input.shape[1]
5575
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5576 5577 5578
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5579 5580 5581 5582
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5583 5584
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5585 5586 5587
    else:
        pass

J
JiabinYang 已提交
5588
    weights = None
5589 5590 5591 5592
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5593
    if not is_custom:
J
JiabinYang 已提交
5594 5595 5596 5597 5598 5599 5600 5601
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5602
            shape=[num_classes, dim],
J
JiabinYang 已提交
5603 5604
            is_bias=False,
            dtype=input.dtype)
5605 5606 5607
    inputs = {
        "X": input,
        "W": weights,
5608
        "PathTable": path_table,
5609
        "PathCode": path_code,
5610 5611
        "Label": label
    }
W
weixing02 已提交
5612
    if helper.bias_attr:
5613
        if not is_custom:
J
JiabinYang 已提交
5614 5615
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5616
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5617 5618 5619 5620 5621 5622
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5623
                shape=[num_classes, 1],
J
JiabinYang 已提交
5624 5625 5626
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5627 5628
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5629
        inputs=inputs,
W
weixing02 已提交
5630
        outputs={"Out": out,
5631 5632 5633 5634 5635 5636 5637
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5638 5639 5640
    return out


Y
fix ci.  
ying 已提交
5641
def transpose(x, perm, name=None):
Y
ying 已提交
5642 5643 5644 5645 5646 5647 5648
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5649 5650 5651
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5652 5653 5654 5655 5656 5657 5658

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5659
            # use append_batch_size=False to avoid prepending extra
5660
            # batch size in shape
5661
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5662
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5663
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5664 5665
    """

Y
fix ci.  
ying 已提交
5666
    if len(perm) != len(x.shape):
Y
ying 已提交
5667 5668 5669
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5670 5671 5672 5673 5674 5675
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5676 5677

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5678 5679
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5680
    helper.append_op(
5681
        type='transpose2',
Y
fix ci.  
ying 已提交
5682
        inputs={'X': [x]},
5683 5684
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5685 5686
        attrs={'axis': perm})
    return out
5687 5688


5689 5690 5691 5692 5693 5694 5695
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5696
    """
5697 5698 5699 5700 5701 5702 5703
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5732 5733 5734 5735 5736 5737 5738 5739 5740
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5741 5742 5743
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5744 5745 5746 5747 5748
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5776 5777 5778
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5791
            output.dims = {8, 8}
5792

5793
            output.lod = [[4, 4]]
5794

T
Tink_Y 已提交
5795
    Examples:
5796 5797 5798

        .. code-block:: python

5799 5800
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5801 5802

    """
W
wanghaoshuang 已提交
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5813 5814 5815 5816 5817 5818 5819
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5820
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5821
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5822
    helper.append_op(
5823
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5824
    return out
5825 5826


Y
yuyang18 已提交
5827
@templatedoc()
5828
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5829 5830
    """
    ${comment}
5831 5832

    Args:
Y
yuyang18 已提交
5833
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5834 5835
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5836 5837 5838 5839 5840
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5841
        ${out_comment}.
5842 5843

    Examples:
Y
yuyang18 已提交
5844 5845 5846 5847
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5848 5849 5850 5851 5852 5853
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5854
    out = helper.create_variable_for_type_inference(dtype)
5855 5856 5857 5858 5859
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5860
    return helper.append_activation(out)
5861 5862


Y
yuyang18 已提交
5863
@templatedoc()
5864 5865
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5866 5867 5868 5869 5870 5871 5872
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5873 5874

    Args:
Y
yuyang18 已提交
5875 5876
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5877 5878

    Returns:
Y
yuyang18 已提交
5879
        ${out_comment}.
5880 5881
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5882 5883 5884 5885 5886

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5887
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5888 5889 5890 5891 5892 5893
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5894 5895


5896 5897 5898
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5899
                               ignore_index=kIgnoreIndex,
5900
                               numeric_stable_mode=True,
5901
                               return_softmax=False):
5902 5903
    """
    **Softmax With Cross Entropy Operator.**
5904

5905 5906 5907 5908
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5909

5910 5911 5912
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5913

5914 5915 5916
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5917

5918
    The equation is as follows:
5919

5920
    1) Hard label (one-hot label, so every sample has exactly one class)
5921

5922 5923 5924 5925
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5926

5927 5928 5929
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5930

5931 5932 5933 5934
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5935 5936 5937
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5938

H
haowang101779990 已提交
5939
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5940

H
haowang101779990 已提交
5941
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5942

H
haowang101779990 已提交
5943
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5944 5945 5946

    and then cross entropy loss is calculated by softmax and label.

5947 5948 5949 5950 5951 5952 5953 5954
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5955 5956
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5957
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5958 5959 5960
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5961 5962 5963
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5964
                                    stable algorithm. Default: True
5965
        return_softmax (bool): A flag indicating whether to return the softmax
5966
                               along with the cross entropy loss. Default: False
5967

5968
    Returns:
H
haowang101779990 已提交
5969 5970 5971 5972 5973
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5974 5975 5976 5977 5978 5979 5980

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5981 5982
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5983 5984
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5985 5986
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5987 5988 5989 5990 5991 5992
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5993 5994 5995 5996 5997
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5998 5999 6000 6001

    if return_softmax:
        return loss, softmax

6002 6003 6004
    return loss


6005 6006 6007
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6008
                                       num_true=1,
6009
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6010 6011 6012
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6013
                                       seed=0):
X
xuezhong 已提交
6014 6015 6016 6017 6018
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6019
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6020 6021 6022 6023 6024 6025 6026 6027
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6028
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6029 6030 6031 6032 6033 6034 6035 6036
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6037
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6049
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6050 6051 6052 6053 6054
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6055
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6056
            logits.
X
xuezhong 已提交
6057 6058 6059 6060 6061
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6062 6063 6064
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6085 6086
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6087 6088 6089 6090 6091

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6092
            'Labels': label,
X
xuezhong 已提交
6093 6094
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6095 6096 6097 6098
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6099
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6100 6101 6102
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6103
            'use_customized_samples': use_customized_samples,
6104
            'uniq': True,
X
xuezhong 已提交
6105 6106 6107 6108
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6109 6110
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6111 6112 6113 6114 6115 6116
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6117 6118
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6119
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6120
                'Label': sampled_softlabel},
X
xuezhong 已提交
6121 6122 6123
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6124
            'soft_label': True,
X
xuezhong 已提交
6125 6126 6127
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6128
    return loss / num_true
X
xuezhong 已提交
6129 6130


6131 6132
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6133 6134
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6135
    For each instance, it computes the smooth L1 loss element by element first
6136
    and then sums all the losses. So the shape of ouput Variable is
6137
    [batch_size, 1].
6138

6139 6140
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6141
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6142
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6143
            L1 loss op with same shape as :attr:`x`.
6144
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6145 6146
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6147
            by this tensor element by element.
6148
        outside_weight (Variable|None): A tensor with rank at least 2. This
6149 6150
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6151
            element by element.
6152
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6153 6154
           scalar with default value 1.0.

6155
    Returns:
6156
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6157 6158 6159 6160 6161

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6162 6163
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6164
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6165
            out = fluid.layers.smooth_l1(x=fc, y=label)
6166
    """
6167

6168
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6169 6170
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6183 6184 6185 6186


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6187
    This layer creates the one-hot representations for input indices.
6188 6189

    Args:
Y
Yibing Liu 已提交
6190 6191
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6192 6193

    Returns:
Y
Yibing Liu 已提交
6194
        Variable: The one-hot representations of input.
6195 6196

    Examples:
C
caoying03 已提交
6197
        .. code-block:: python
6198

Y
Yibing Liu 已提交
6199 6200
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6201 6202
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6203
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6204 6205 6206 6207 6208 6209
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6210 6211


Y
Yu Yang 已提交
6212
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6213
    """
Y
yi.wu 已提交
6214 6215 6216
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6217 6218 6219 6220 6221 6222

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6223 6224
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6225 6226 6227 6228 6229 6230

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6231 6232
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6233 6234
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6235 6236 6237 6238 6239
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6240
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6241
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6242 6243
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6244
            outputs={'Out': [counter]},
M
minqiyang 已提交
6245 6246
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6247 6248 6249
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6250 6251


6252
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6253
    """
C
caoying03 已提交
6254 6255
    Gives a new shape to the input Tensor without changing its data.

6256 6257 6258 6259 6260
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6261

6262
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6263

6264 6265 6266 6267
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6268
    2. 0 means the actual dimension value is going to be copied from the
6269 6270 6271 6272
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6273 6274

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6275
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6276
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6277

6278
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6279 6280
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6281 6282
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6283
    dimensions.
C
caoying03 已提交
6284

6285
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6286 6287 6288 6289
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6290 6291

    Args:
6292
        x(variable): The input tensor.
C
caoying03 已提交
6293 6294
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6295 6296 6297 6298 6299
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6300 6301
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6302 6303 6304
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6305
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6306
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6307

6308
    Returns:
G
guosheng 已提交
6309 6310 6311 6312
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6313

X
Xin Pan 已提交
6314 6315 6316
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6317 6318
    Examples:
        .. code-block:: python
G
guosheng 已提交
6319

6320
            data = fluid.layers.data(
6321
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6322
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6323
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6324 6325 6326
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6327
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6328 6329 6330 6331 6332
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6333

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6349
    helper = LayerHelper("reshape2", **locals())
6350 6351
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6352
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6353
    helper.append_op(
6354
        type="reshape2",
X
Xin Pan 已提交
6355
        inputs=inputs,
D
dzhwinter 已提交
6356
        attrs={"shape": shape},
6357 6358
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6359

D
dzhwinter 已提交
6360
    return helper.append_activation(out)
6361

6362

6363
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6364
    """
M
minqiyang 已提交
6365 6366 6367
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6368
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6369

H
haowang101779990 已提交
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6391

Y
Yibing Liu 已提交
6392
    Args:
6393
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6394
        axes (list): List of integers, indicating the dimensions to be squeezed.
6395
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6396 6397 6398 6399 6400 6401 6402 6403

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6404
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6405
    """
6406 6407
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6408
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6409 6410
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6411
    helper.append_op(
6412
        type="squeeze2",
6413
        inputs={"X": input},
Y
Yibing Liu 已提交
6414
        attrs={"axes": axes},
6415 6416
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6417

6418 6419 6420
    return out


6421
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6422
    """
M
minqiyang 已提交
6423 6424 6425
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6426

M
minqiyang 已提交
6427
    For example:
H
haowang101779990 已提交
6428 6429 6430

    .. code-block:: text

M
minqiyang 已提交
6431
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6432
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6433

Y
Yibing Liu 已提交
6434
    Args:
6435
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6436
        axes (list): List of integers, indicating the dimensions to be inserted.
6437
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6438 6439 6440 6441 6442 6443 6444 6445

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6446
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6447 6448
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6449 6450
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6451
    helper.append_op(
6452
        type="unsqueeze2",
6453
        inputs={"X": input},
Y
Yibing Liu 已提交
6454
        attrs={"axes": axes},
6455 6456
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6457

6458 6459
    return out

6460

Y
yangyaming 已提交
6461
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6462
    """
Y
Yibing Liu 已提交
6463
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6464 6465 6466 6467
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6468
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6469 6470 6471 6472 6473 6474

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6475
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6476 6477 6478
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6479
            target_lod: [4, 2]
Y
yangyaming 已提交
6480 6481

            then we get a 1-level LoDTensor:
6482
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6483 6484 6485 6486 6487 6488
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6489
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6490 6491 6492 6493
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6494
                y.data = [[2, 4]]
Y
yangyaming 已提交
6495 6496 6497
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6498
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6499 6500 6501 6502 6503 6504
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6505
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6506 6507 6508 6509
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6510
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6511 6512 6513 6514
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6515
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6516 6517 6518 6519 6520
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6521
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6522
                           from :attr:`y`.
Y
yangyaming 已提交
6523
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6524
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6525 6526

    Returns:
Y
Yibing Liu 已提交
6527
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6528 6529

    Raises:
Y
Yibing Liu 已提交
6530
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6540
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6566
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6595 6596
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6609 6610 6611
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6625 6626 6627 6628


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6629
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6630
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6631

G
guosheng 已提交
6632 6633 6634 6635
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6658
                         The length of :attr:paddings must be
G
guosheng 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6669

G
guosheng 已提交
6670 6671 6672 6673 6674 6675
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6676
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6677 6678 6679 6680 6681 6682 6683
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6684 6685


C
chengduo 已提交
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6717 6718
		And
            pad_value = -1,
C
chengduo 已提交
6719

T
Tink_Y 已提交
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6755
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6756 6757 6758 6759 6760 6761 6762 6763 6764
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6765 6766 6767 6768 6769 6770 6771
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6772 6773
    called label-smoothing regularization (LSR).

6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6797
                              be :math:`(1, class\_num)`.
6798 6799
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6800
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6820
    smooth_label = helper.create_variable_for_type_inference(dtype)
6821 6822 6823 6824 6825 6826 6827
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6828 6829


W
wopeizl 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6866 6867


J
jerrywgz 已提交
6868 6869 6870 6871 6872 6873
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6874 6875
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6892 6893 6894
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6895 6896 6897 6898 6899 6900
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6901
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6942 6943
        .. code-block:: python

W
whs 已提交
6944 6945 6946 6947
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6948
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6949 6950 6951 6952 6953 6954
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6955 6956


6957 6958 6959 6960
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6961
                 resample='BILINEAR',
6962 6963
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
6964
                 align_mode=1):
6965
    """
Q
qiaolongfei 已提交
6966
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6967

6968
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6969 6970 6971
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6972

6973
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6974

6975
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6976

6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
6987
    Align_corners and align_mode are optinal parameters,the calculation method 
6988 6989 6990 6991
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6992
    .. code-block:: text
6993

T
Tink_Y 已提交
6994
        For scale:
6995
          
T
Tink_Y 已提交
6996
            if align_corners = True && out_size > 1 :
6997

T
Tink_Y 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7009

T
Tink_Y 已提交
7010 7011
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7012

T
Tink_Y 已提交
7013 7014
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7015

T
Tink_Y 已提交
7016 7017
          else:
              align_corners = True
7018

T
Tink_Y 已提交
7019 7020
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7021

T
Tink_Y 已提交
7022 7023
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7024

T
Tink_Y 已提交
7025 7026 7027 7028 7029 7030 7031 7032 7033 7034
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7035

T
Tink_Y 已提交
7036 7037 7038 7039
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7040

T
Tink_Y 已提交
7041 7042
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7043 7044 7045 7046 7047 7048 7049 7050 7051

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7052
    Args:
7053
        input (Variable): The input tensor of image resize layer,
7054 7055
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7056
        out_shape(list|tuple|Variable|None): Output shape of image resize
7057 7058
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7059
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7060
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7061
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7062
             Default: None.
7063 7064
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7065
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7066
                       currently.
7067
                       Default: 'BILINEAR'
7068 7069 7070
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7071
                                :attr:`out_shape` and :attr:`scale` specifying
7072 7073 7074 7075 7076 7077 7078
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7079 7080
                                constructing stage.
                                Default: None
7081 7082 7083 7084
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7085
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7086 7087
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7088 7089

    Returns:
Q
update  
qiaolongfei 已提交
7090 7091
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7092

7093 7094 7095
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7096
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7097 7098 7099
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7100
        ValueError: scale should be greater than zero.
7101 7102
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7103

7104 7105 7106
    Examples:
        .. code-block:: python

7107
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7108
    """
7109 7110 7111 7112
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7113 7114
    if resample not in resample_methods:
        raise ValueError(
7115
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7116
        )
7117
    resample_type = resample_methods[resample]
7118 7119 7120 7121 7122 7123

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7124
    if out_shape is None and scale is None:
7125
        raise ValueError("One of out_shape and scale must not be None.")
7126
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7127
    dtype = helper.input_dtype()
7128 7129 7130 7131

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

D
dengkaipeng 已提交
7132
    inputs = {"X": input}
D
dengkaipeng 已提交
7133
    attrs = {
D
dengkaipeng 已提交
7134 7135
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7136 7137 7138 7139 7140
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7141
    if out_shape is not None:
7142 7143 7144 7145
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7146
            inputs['OutSize'] = out_shape
7147 7148
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7149 7150
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7151 7152 7153 7154 7155 7156 7157
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7158
    else:
D
dengkaipeng 已提交
7159 7160
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7161
        attrs['scale'] = float(scale)
7162

7163 7164 7165 7166 7167
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7168
    out = helper.create_variable_for_type_inference(dtype)
7169
    helper.append_op(
7170
        type='{}_interp'.format(resample_type),
7171
        inputs=inputs,
7172
        outputs={"Out": out},
D
dengkaipeng 已提交
7173
        attrs=attrs)
7174
    return out
F
stash  
fengjiayi 已提交
7175 7176


7177
@templatedoc(op_type="bilinear_interp")
7178 7179 7180 7181
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7182 7183
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7184
                    align_mode=1):
7185
    """
7186 7187
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7188 7189
    in priority order.

7190 7191 7192 7193
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7194 7195
    again in the other direction.

7196
    For details of bilinear interpolation, please refer to Wikipedia:
7197
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7198

T
tink2123 已提交
7199
    Align_corners and align_mode are optinal parameters,the calculation 
7200 7201 7202 7203
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7204
    .. code-block:: text
7205

T
Tink_Y 已提交
7206
        For scale:
7207
          
T
Tink_Y 已提交
7208
            if align_corners = True && out_size > 1 :
7209

T
Tink_Y 已提交
7210 7211 7212 7213 7214
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7215

T
Tink_Y 已提交
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7226 7227


T
Tink_Y 已提交
7228
          else:
T
tink2123 已提交
7229

T
Tink_Y 已提交
7230 7231
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7232

T
Tink_Y 已提交
7233 7234
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7235 7236 7237



Y
yuyang18 已提交
7238 7239 7240
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7241 7242 7243
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7244

Y
yuyang18 已提交
7245
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7246
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7247
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7248
             Default: None.
Y
yuyang18 已提交
7249 7250

        name(str|None): The output variable name.
7251 7252 7253
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7254
                                :attr:`out_shape` and :attr:`scale` specifying
7255 7256 7257 7258 7259 7260 7261
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7262 7263
                                constructing stage.
                                Default: None
7264 7265
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7266 7267 7268

    Returns:
        ${out_comment}.
7269 7270 7271 7272 7273

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7274 7275
    """

7276 7277
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7278 7279


7280
@templatedoc(op_type="nearest_interp")
7281 7282 7283 7284
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7285 7286
                   actual_shape=None,
                   align_corners=True):
7287
    """
7288
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7289 7290
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7291 7292
    out_shape and scale in priority order.

7293 7294
    Example:

T
Tink_Y 已提交
7295 7296 7297 7298 7299
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7300

T
Tink_Y 已提交
7301 7302 7303 7304 7305 7306 7307 7308
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7309
          
T
Tink_Y 已提交
7310 7311
          if:
              align_corners = False
7312

T
Tink_Y 已提交
7313 7314
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7315

T
Tink_Y 已提交
7316 7317
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7318

T
Tink_Y 已提交
7319 7320
          else:
              align_corners = True
7321

T
Tink_Y 已提交
7322 7323
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7324

T
Tink_Y 已提交
7325 7326
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7327 7328


7329
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7330
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7331 7332 7333 7334

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7335 7336 7337
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7338

Y
yuyang18 已提交
7339
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7340
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7341
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7342
             Default: None.
Y
yuyang18 已提交
7343 7344

        name(str|None): The output variable name.
7345 7346 7347
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7348
                                :attr:`out_shape` and :attr:`scale` specifying
7349 7350 7351 7352 7353 7354 7355
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7356 7357
                                constructing stage.
                                Default: None
7358
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7359 7360 7361

    Returns:
        ${out_comment}.
7362 7363 7364 7365 7366

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7367 7368
    """

7369 7370
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7371 7372 7373 7374


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7375 7376 7377
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7378 7379 7380 7381 7382 7383 7384
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7385
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7386

7387
    Returns:
Q
update  
qiaolongfei 已提交
7388
        Variable: The output is a 4-D tensor of the shape
7389
        (num_batches, channls, out_h, out_w).
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7400 7401 7402
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7403 7404 7405
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7406 7407
def gather(input, index):
    """
Q
qiaolongfei 已提交
7408 7409
    **Gather Layer**

7410
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7411 7412 7413 7414
    of X indexed by `index` and concatenate them together.

    .. math::

7415
        Out = X[Index]
W
whs 已提交
7416 7417 7418 7419 7420 7421 7422


    .. code-block:: text


                Given:

7423 7424
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7435
        input (Variable): The source input with rank>=1.
W
whs 已提交
7436 7437 7438 7439 7440 7441
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7442

W
whs 已提交
7443 7444 7445 7446 7447 7448
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7449
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7450 7451 7452 7453 7454 7455 7456 7457
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7489
    out = helper.create_variable_for_type_inference(dtype)
7490 7491 7492 7493 7494 7495 7496 7497 7498
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7499 7500 7501 7502 7503 7504 7505 7506 7507
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7508

Q
Qingsheng Li 已提交
7509
    Given the following input:
H
haowang101779990 已提交
7510

Q
Qingsheng Li 已提交
7511
    .. code-block:: text
H
haowang101779990 已提交
7512

Q
Qingsheng Li 已提交
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7525

Q
Qingsheng Li 已提交
7526
    .. code-block:: text
H
haowang101779990 已提交
7527

Q
Qingsheng Li 已提交
7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7543
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7544 7545 7546 7547 7548 7549 7550 7551 7552 7553

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7554
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7555 7556 7557 7558 7559 7560 7561 7562 7563
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7577

7578 7579 7580
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7581
    """
F
stash  
fengjiayi 已提交
7582
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7583
    dtype = x.dtype
X
Xin Pan 已提交
7584
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7585
    if seed is None:
7586
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7587
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7588
    if isinstance(seed, int):
F
fengjiayi 已提交
7589 7590 7591 7592 7593
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7594 7595 7596 7597
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7598
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7599 7600
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7601 7602
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7603
    return out
W
whs 已提交
7604 7605


7606
def log(x, name=None):
W
wanghaoshuang 已提交
7607 7608 7609 7610 7611
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7612
        Out = \\ln(x)
W
wanghaoshuang 已提交
7613 7614

    Args:
7615
        x (Variable): Input tensor.
7616 7617
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7618 7619 7620 7621 7622 7623 7624 7625

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7626
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7627 7628
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7629
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7630
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7631
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7632 7633 7634
    return out


7635
def relu(x, name=None):
W
wanghaoshuang 已提交
7636 7637
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7638
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7639 7640 7641 7642
    the tensor elementwise.

    .. math::

7643
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7644 7645

    Args:
7646
        x (Variable): The input tensor.
7647 7648
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7649 7650 7651 7652 7653 7654 7655 7656

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7657
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7658 7659
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7660
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7661
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7662 7663
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7664
    return out
7665 7666


C
chengduo 已提交
7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7708 7709 7710
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7711 7712 7713 7714
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7715
    .. math::
7716

H
haowang101779990 已提交
7717
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7718

7719
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7720 7721 7722 7723 7724
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7725
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7726
                           Its shape should be the same as input.
7727
        num_classes (int): The possible number of labels.
W
whs 已提交
7728 7729

    Returns:
M
minqiyang 已提交
7730 7731
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7732
                     Three variables:
M
minqiyang 已提交
7733

H
haowang101779990 已提交
7734 7735 7736
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7737 7738 7739 7740

    Examples:

        .. code-block:: python
7741

W
whs 已提交
7742 7743 7744 7745
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7746 7747 7748
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7749 7750
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7751 7752
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7753
        outputs={
W
whs 已提交
7754 7755 7756
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7757 7758 7759
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7828
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7829 7830 7831 7832 7833

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7834
            isinstance(shape, Variable)):
7835 7836 7837 7838 7839
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7840
    out = helper.create_variable_for_type_inference(x.dtype)
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7858 7859


W
whs 已提交
7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7877

W
whs 已提交
7878
              out_shape = [2, 3, 5, 5]
7879

W
whs 已提交
7880
          Step 1:
7881

W
whs 已提交
7882 7883 7884
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7885

W
whs 已提交
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7931
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7932
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7945

W
whs 已提交
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7957
            isinstance(out_shape, Variable)):
W
whs 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7979 7980
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7981

7982 7983
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7984
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7985 7986 7987
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7988

7989 7990
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7991

H
haowang101779990 已提交
7992 7993
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7994 7995
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7996

H
haowang101779990 已提交
7997 7998 7999 8000 8001 8002 8003 8004
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8005 8006 8007

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8042
    out = helper.create_variable_for_type_inference("float32")
8043 8044 8045 8046 8047 8048 8049 8050

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8051 8052


M
minqiyang 已提交
8053 8054
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8055
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8056
    which compares left score and right score passed in.
M
minqiyang 已提交
8057
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8058 8059 8060

    .. math::

H
haowang101779990 已提交
8061
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8062 8063

    Args:
M
minqiyang 已提交
8064
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8065 8066
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8067
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8068 8069
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8070

M
minqiyang 已提交
8071
    Returns:
M
minqiyang 已提交
8072
       Variable: The ranking loss.
H
haowang101779990 已提交
8073

M
minqiyang 已提交
8074
    Raises:
M
minqiyang 已提交
8075
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8076

M
minqiyang 已提交
8077
    Examples:
H
haowang101779990 已提交
8078

M
minqiyang 已提交
8079
        .. code-block:: python
H
haowang101779990 已提交
8080

M
minqiyang 已提交
8081 8082 8083 8084 8085
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8086
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8087 8088 8089 8090 8091 8092
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8093 8094
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8118
        .. code-block:: text
W
whs 已提交
8119

T
Tink_Y 已提交
8120
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8121

T
Tink_Y 已提交
8122 8123
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8124

T
Tink_Y 已提交
8125
	      Case 0:
M
minqiyang 已提交
8126

T
Tink_Y 已提交
8127 8128 8129
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8130

T
Tink_Y 已提交
8131 8132 8133
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8134

T
Tink_Y 已提交
8135
	      Case 1:
M
minqiyang 已提交
8136

T
Tink_Y 已提交
8137 8138
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8139

T
Tink_Y 已提交
8140 8141 8142
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8143

T
Tink_Y 已提交
8144
	      Case 2:
M
minqiyang 已提交
8145

T
Tink_Y 已提交
8146 8147
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8148

T
Tink_Y 已提交
8149 8150 8151
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8152 8153


W
whs 已提交
8154 8155
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8156
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8180
    out = helper.create_variable_for_type_inference(dtype)
8181 8182 8183 8184 8185 8186 8187 8188 8189
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8190
    helper.append_op(
8191
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8192 8193 8194 8195

    return out


8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8208 8209 8210 8211 8212

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8213 8214
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8215 8216
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8217
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8238 8239 8240 8241 8242

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8243 8244
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8245 8246
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8247
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8268 8269 8270 8271 8272

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8273 8274
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8275 8276
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8277
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8299 8300 8301 8302 8303

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8304
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8305
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8306 8307
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8308
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8331 8332 8333 8334 8335

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8336 8337
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8338 8339
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8340
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8362 8363 8364 8365 8366

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8367 8368
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8369 8370
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8371
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8372 8373 8374 8375 8376 8377 8378 8379
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8380 8381 8382 8383
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8384 8385
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8386 8387 8388

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8389
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8390
          weight (alpha).
J
jerrywgz 已提交
8391
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8392 8393 8394
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8395
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8396
          will be named automatically.
J
jerrywgz 已提交
8397 8398 8399 8400 8401 8402 8403 8404

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8405
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8419
        attr=helper.param_attr,
J
jerrywgz 已提交
8420 8421 8422 8423
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8424
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8425 8426 8427 8428 8429 8430 8431 8432 8433
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8444
    Returns:
8445
        output(${out_type}): ${out_comment}
8446 8447 8448

    Examples:

8449
    .. code-block:: python
8450

H
haowang101779990 已提交
8451 8452
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8453 8454
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8455
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8474
    Returns:
8475
        output(${out_type}): ${out_comment}
8476 8477 8478 8479 8480

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8481 8482
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8483 8484
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8485
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8503
    Returns:
8504
        output(${out_type}): ${out_comment}
8505 8506 8507 8508 8509

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8510 8511
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8512 8513
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8514
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8515 8516 8517 8518 8519 8520 8521 8522
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8523 8524 8525 8526
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8527

H
haowang101779990 已提交
8528
    For Example:
M
minqiyang 已提交
8529

H
haowang101779990 已提交
8530
    .. code-block:: text
8531

H
haowang101779990 已提交
8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8553 8554 8555

    Args:
        x (Variable): A tensor of rank >= axis.
8556 8557
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8558 8559 8560 8561 8562 8563 8564 8565
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8566 8567 8568
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8569 8570 8571 8572
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8573
        ValueError: If axis is not in range [0, rank(x)].
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8590 8591
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8592
    helper.append_op(
8593
        type='flatten2',
8594
        inputs={"X": x},
8595 8596
        outputs={'Out': out,
                 'XShape': x_shape},
8597 8598
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8599 8600


C
chenweihang 已提交
8601
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8602
    """
C
chenweihang 已提交
8603
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8604
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8605 8606
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8607

H
haowang101779990 已提交
8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8625 8626

    Args:
C
chenweihang 已提交
8627 8628 8629
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8641 8642
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8643 8644 8645 8646 8647 8648
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8649
    return out
8650

8651

S
sneaxiy 已提交
8652 8653 8654 8655 8656 8657 8658 8659 8660
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8661

S
sneaxiy 已提交
8662
    .. math::
8663

S
sneaxiy 已提交
8664 8665 8666
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8667
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8668 8669 8670 8671
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8672 8673 8674
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8675 8676
    Returns:
        Variable: The output sequence mask.
8677

S
sneaxiy 已提交
8678 8679
    """

Q
qingqing01 已提交
8680
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8681
    if name is None:
X
Xin Pan 已提交
8682
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8683
    else:
X
Xin Pan 已提交
8684
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8685

Q
qingqing01 已提交
8686 8687 8688
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8689 8690
        outputs={'Y': out},
        attrs={
8691
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8692 8693 8694
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8695 8696


X
Xin Pan 已提交
8697
def stack(x, axis=0):
S
sneaxiy 已提交
8698 8699 8700 8701
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8702 8703 8704 8705 8706 8707 8708

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8709
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8710
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8711

C
chengduozh 已提交
8712 8713
    For Example:

C
chengduozh 已提交
8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8752
    Args:
8753
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8754
        axis (int|None): The axis along which all inputs are stacked.
8755

S
sneaxiy 已提交
8756 8757
    Returns:
        Variable: The stacked variable.
8758

S
sneaxiy 已提交
8759 8760
    """

X
Xin Pan 已提交
8761 8762 8763 8764 8765 8766
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8767
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8768
    helper.append_op(
S
sneaxiy 已提交
8769 8770
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8771

X
Xin Pan 已提交
8772
    return out
D
dzhwinter 已提交
8773 8774 8775 8776 8777 8778 8779


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8780

D
dzhwinter 已提交
8781 8782 8783
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8784
    raised.
D
dzhwinter 已提交
8785 8786

    Args:
M
minqiyang 已提交
8787
        x (Variable): Input variable.
D
dzhwinter 已提交
8788 8789
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8790

D
dzhwinter 已提交
8791 8792
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8793

D
dzhwinter 已提交
8794 8795 8796 8797 8798 8799 8800 8801 8802 8803
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8804
    for _ in range(num):
X
Xin Pan 已提交
8805
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8806 8807 8808 8809 8810 8811 8812 8813

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8826

W
whs 已提交
8827 8828 8829 8830
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8831

W
whs 已提交
8832
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8833

W
whs 已提交
8834
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8835

W
whs 已提交
8836 8837 8838 8839
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8840

W
whs 已提交
8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8857
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8858 8859 8860 8861 8862 8863
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8864 8865


G
fix  
gongweibao 已提交
8866 8867 8868
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8869
@templatedoc()
G
fix  
gongweibao 已提交
8870 8871 8872 8873 8874 8875 8876 8877 8878
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8879
    ${comment}
G
fix  
gongweibao 已提交
8880 8881

    Args:
G
gongweibao 已提交
8882 8883 8884
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8885
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8886 8887 8888
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8889 8890
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8891
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8892

8893 8894 8895 8896 8897
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8898 8899 8900
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8901
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8918 8919


G
gongweibao 已提交
8920
@templatedoc()
X
Xin Pan 已提交
8921
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8922
    """
G
gongweibao 已提交
8923
    ${comment}
G
fix  
gongweibao 已提交
8924 8925

    Args:
G
gongweibao 已提交
8926 8927 8928 8929
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8930 8931 8932
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8933
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8934

8935 8936 8937 8938
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8939 8940 8941
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8942
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8953
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8954 8955 8956 8957 8958
        })

    return out


G
gongweibao 已提交
8959
@templatedoc()
G
fix  
gongweibao 已提交
8960
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8961
    """
G
gongweibao 已提交
8962
    ${comment}
G
fix  
gongweibao 已提交
8963 8964

    Args:
G
gongweibao 已提交
8965 8966 8967 8968
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8969
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8970 8971

    Returns:
G
gongweibao 已提交
8972
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8973

8974 8975 8976 8977 8978 8979 8980 8981 8982 8983
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8984 8985 8986
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8987
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8999
@templatedoc()
G
fix  
gongweibao 已提交
9000 9001 9002 9003 9004 9005 9006 9007 9008
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9009
    ${comment}
G
fix  
gongweibao 已提交
9010 9011

    Args:
G
gongweibao 已提交
9012 9013
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9014
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9015 9016 9017 9018
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9019
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9020 9021

    Returns:
G
gongweibao 已提交
9022
        out (Variable): ${out_comment}
9023 9024 9025 9026 9027 9028 9029 9030

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9031 9032 9033
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9034
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9053
@templatedoc()
X
Xin Pan 已提交
9054
def sum(x):
G
fix  
gongweibao 已提交
9055
    """
G
gongweibao 已提交
9056
    ${comment}
G
fix  
gongweibao 已提交
9057 9058

    Args:
G
gongweibao 已提交
9059
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9060 9061

    Returns:
G
gongweibao 已提交
9062
        out (Variable): ${out_comment}
9063 9064 9065 9066 9067 9068

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9069 9070 9071
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9072 9073
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9074 9075 9076 9077
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9078
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9079 9080 9081 9082

    return out


G
gongweibao 已提交
9083
@templatedoc()
G
fix  
gongweibao 已提交
9084 9085
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9086
    ${comment}
G
fix  
gongweibao 已提交
9087 9088

    Args:
G
gongweibao 已提交
9089 9090 9091 9092
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9093 9094

    Returns:
G
gongweibao 已提交
9095
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9096

9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9108 9109 9110
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9111 9112
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9126 9127
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9128
    Get the shape of the input.
G
fix  
gongweibao 已提交
9129 9130

    Args:
C
chengduozh 已提交
9131
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9132 9133

    Returns:
C
fix doc  
chengduozh 已提交
9134
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9135

9136 9137 9138 9139 9140 9141
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9142 9143 9144
    """

    helper = LayerHelper('shape', **locals())
9145
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9146
    helper.append_op(
G
fix  
gongweibao 已提交
9147
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9148 9149

    return out
G
merge  
gongweibao 已提交
9150 9151


S
sneaxiy 已提交
9152 9153 9154 9155
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
9156 9157 9158 9159
    if _in_imperative_mode():
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9160 9161 9162 9163
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9164 9165
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9166
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9167 9168 9169
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9170

S
sneaxiy 已提交
9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9182
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9183 9184 9185 9186 9187 9188 9189 9190
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9191
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9192
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9193 9194 9195 9196 9197 9198

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9199
    if name is None:
X
Xin Pan 已提交
9200
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9201 9202 9203
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9204 9205 9206 9207 9208 9209 9210 9211 9212 9213

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9214
    return helper.append_activation(out)
S
sneaxiy 已提交
9215 9216


X
Xin Pan 已提交
9217
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9218 9219 9220
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9221
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9222 9223 9224
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9225
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9226 9227 9228
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9229
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9230 9231 9232
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9233
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9234 9235 9236
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9237
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9238 9239 9240
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9241
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9242 9243 9244
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9245 9246 9247 9248 9249 9250 9251 9252
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9253
for func in [
9254 9255 9256 9257 9258 9259 9260 9261 9262
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9263 9264 9265 9266 9267
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9268 9269
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9270
        ])
M
minqiyang 已提交
9271 9272


9273
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9274 9275
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9276 9277
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9278 9279 9280

    if out is None:
        if name is None:
X
Xin Pan 已提交
9281
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9297
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9309 9310 9311 9312 9313 9314 9315 9316 9317

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9318 9319 9320 9321 9322 9323 9324
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9325
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9337 9338 9339 9340 9341 9342 9343 9344 9345

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9346 9347 9348 9349 9350 9351 9352
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9353
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9365 9366 9367 9368 9369 9370 9371 9372 9373

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9374 9375 9376 9377 9378 9379 9380
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9381
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9392 9393 9394 9395 9396 9397 9398

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9399 9400 9401 9402
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9418 9419 9420 9421 9422 9423 9424

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9425 9426 9427 9428 9429
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9430 9431 9432 9433
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9457 9458 9459 9460 9461 9462 9463

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9464 9465 9466 9467 9468
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9469 9470 9471 9472
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9473 9474 9475 9476 9477 9478 9479 9480

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9499
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9500 9501 9502 9503 9504 9505 9506 9507 9508 9509
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9552
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9553 9554 9555 9556 9557 9558 9559 9560 9561
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9562 9563
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9564 9565 9566 9567 9568 9569
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9570 9571 9572
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9573 9574
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9575 9576 9577 9578 9579 9580
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9581
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9582
        name(basestring|None): Name of the output.
9583 9584
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9585 9586 9587

    Returns:
        out(${out_type}): ${out_comment}
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9602 9603 9604 9605 9606
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9607
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9608 9609 9610 9611 9612 9613 9614 9615
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9616 9617
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9638
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9639 9640 9641 9642 9643 9644 9645 9646 9647 9648
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9649 9650


J
JiabinYang 已提交
9651
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9652
    """
J
JiabinYang 已提交
9653
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9654 9655 9656

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9657
    The attr blocksize indicates the input block size.
9658 9659

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9660
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9661 9662

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9663
    (but keeping all data)
J
JiabinYang 已提交
9664

J
JiabinYang 已提交
9665
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9666
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9667 9668 9669 9670 9671
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9672
    Args:
J
JiabinYang 已提交
9673
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9674
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9675 9676

    Returns:
J
JiabinYang 已提交
9677
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9678 9679

    Raises:
J
JiabinYang 已提交
9680
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9681 9682 9683 9684 9685 9686

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9687
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9688
                x=data, blocksize=2)
J
JiabinYang 已提交
9689 9690
    """

J
JiabinYang 已提交
9691
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9692

J
JiabinYang 已提交
9693 9694
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9695 9696

    if name is None:
J
JiabinYang 已提交
9697 9698
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9699 9700 9701 9702 9703
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9704
        type="space_to_depth",
J
JiabinYang 已提交
9705
        inputs={"X": x},
J
JiabinYang 已提交
9706
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9707
        outputs={"Out": out})
J
JiabinYang 已提交
9708 9709
    return out

J
JiabinYang 已提交
9710

S
sneaxiy 已提交
9711 9712
@templatedoc()
def sequence_reverse(x, name=None):
9713
    """
S
sneaxiy 已提交
9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9725
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9736 9737


9738 9739 9740 9741 9742 9743
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9744 9745 9746 9747 9748
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9749

9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9762
        act (str, default None): Activation to be applied to the output of this layer.
9763 9764 9765 9766 9767 9768 9769

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9770
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9782
    return helper.append_activation(out)
9783 9784


B
barrierye 已提交
9785
def similarity_focus(input, axis, indexes, name=None):
9786
    """
B
barrierye 已提交
9787
    SimilarityFocus Operator
B
barrierye 已提交
9788 9789

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9790

9791 9792 9793
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9794
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9795 9796 9797 9798 9799 9800 9801
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9802
       each index.
B
barrierye 已提交
9803 9804 9805 9806
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9856
    Args:
9857
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9858
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9859
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9860
            1, 2 or 3.
B
barrierye 已提交
9861
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9862 9863

    Returns:
H
haowang101779990 已提交
9864 9865
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9866

B
barrierye 已提交
9867 9868
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9869

B
barrierye 已提交
9870
            data = fluid.layers.data(
B
barrierye 已提交
9871 9872
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9873

B
barrierye 已提交
9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9886 9887 9888 9889 9890
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9891 9892 9893 9894 9895 9896 9897
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9898 9899


M
minqiyang 已提交
9900 9901
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9902 9903
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9904 9905
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9944
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9945
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9946 9947 9948 9949 9950 9951

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9952

M
minqiyang 已提交
9953 9954 9955
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9956 9957
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9958 9959
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9960 9961 9962 9963 9964 9965 9966
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9967 9968


D
dengkaipeng 已提交
9969
@templatedoc()
9970 9971
def grid_sampler(x, grid, name=None):
    """
9972
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9973
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9974 9975 9976 9977
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9978
    interpolation value of 4 nearest corner points.
9979

H
haowang101779990 已提交
9980
    .. code-block:: text
9981

H
haowang101779990 已提交
9982 9983
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9984

H
haowang101779990 已提交
9985 9986
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9987

H
haowang101779990 已提交
9988 9989 9990
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9991

H
haowang101779990 已提交
9992 9993 9994 9995 9996 9997 9998 9999 10000
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10001

H
haowang101779990 已提交
10002 10003 10004 10005
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10006

H
haowang101779990 已提交
10007 10008 10009 10010
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10011

H
haowang101779990 已提交
10012 10013 10014 10015
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10016

H
haowang101779990 已提交
10017 10018
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10019 10020

    Args:
10021 10022 10023
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10024 10025

    Returns:
H
haowang101779990 已提交
10026
        Variable: Output of shape [N, C, H, W] data samples input X
10027 10028
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10029 10030 10031 10032 10033 10034 10035 10036
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10037

D
dengkaipeng 已提交
10038 10039 10040 10041 10042 10043 10044 10045 10046
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10047
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10048 10049
    ipts = {'X': x, 'Grid': grid}

10050
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10051 10052 10053
    return out


G
gmcather 已提交
10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10120
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10121 10122 10123 10124 10125 10126 10127
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10128

H
heqiaozhi 已提交
10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10143 10144 10145 10146
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10147
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10148 10149
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10150
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10151 10152

    .. math::
H
haowang101779990 已提交
10153 10154 10155
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10156 10157

    Where:
H
haowang101779990 已提交
10158 10159
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10174

G
gmcather 已提交
10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10191 10192 10193 10194 10195 10196 10197 10198 10199 10200


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10201
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10202

Q
Qiao Longfei 已提交
10203
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10204 10205 10206
    For example:

    .. math::
H
haowang101779990 已提交
10207
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10208

Q
Qiao Longfei 已提交
10209
    In this formula:
10210 10211
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10212
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10213
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10214 10215 10216
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10217 10218
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10219 10220 10221
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10222
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10223
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10224
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10225 10226 10227 10228
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10229
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10230 10231 10232 10233

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10234
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10235 10236
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10237
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10238 10239 10240 10241

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10242
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10283 10284


S
shippingwang 已提交
10285
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10286 10287
    """
    **Shuffle Channel Operator**
10288

S
shippingwang 已提交
10289 10290 10291 10292 10293 10294
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10295
    
S
shippingwang 已提交
10296
    .. code-block:: text
10297

S
shippingwang 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10326
    Args: 
S
shippingwang 已提交
10327 10328
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10329 10330

    Returns:
S
shippingwang 已提交
10331 10332
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10333 10334

    Raises:
S
shippingwang 已提交
10335
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10336 10337 10338

    Examples:
        .. code-block:: python
10339 10340

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10341
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10342 10343 10344
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10345
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10346 10347 10348 10349 10350 10351 10352 10353 10354

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10355
    return out
S
Add  
shippingwang 已提交
10356 10357


S
sneaxiy 已提交
10358
class PyFuncRegistry(object):
S
sneaxiy 已提交
10359 10360 10361
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10362
        if func is None or not callable(func):
S
sneaxiy 已提交
10363 10364 10365
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10366
        # find named args using reflection
S
sneaxiy 已提交
10367 10368 10369 10370 10371 10372 10373
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10374 10375 10376
        '''
        Why record self here?

M
minqiyang 已提交
10377 10378
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10379
           to find the registered function corresponding
M
minqiyang 已提交
10380
           to :code:`idx`.
S
sneaxiy 已提交
10381

M
minqiyang 已提交
10382 10383
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10384
           whose reference count is 1 would cause
M
minqiyang 已提交
10385
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10386 10387
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10388
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10403 10404 10405 10406 10407 10408 10409 10410 10411
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10412

S
sneaxiy 已提交
10413 10414
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10415 10416

        ret = []
S
sneaxiy 已提交
10417 10418 10419
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10420 10421
                continue

S
sneaxiy 已提交
10422 10423
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10424

S
sneaxiy 已提交
10425 10426 10427
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10428

S
sneaxiy 已提交
10429
        return tuple(ret)
S
sneaxiy 已提交
10430 10431


S
sneaxiy 已提交
10432 10433 10434 10435
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10436

S
sneaxiy 已提交
10437 10438 10439 10440 10441 10442 10443 10444
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10445
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10446

S
sneaxiy 已提交
10447 10448
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10449 10450 10451 10452
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10453
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10454
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10455 10456
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10457 10458 10459 10460 10461
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10462
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10463
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10464
                                       None means no backward. Default None.
S
sneaxiy 已提交
10465
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10466
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10467 10468
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10469
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10470 10471 10472

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10473 10474

    Examples:
M
minqiyang 已提交
10475

S
sneaxiy 已提交
10476 10477 10478 10479 10480
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10481
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10482 10483
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10484
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10485 10486 10487
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10488
        >>>
S
sneaxiy 已提交
10489 10490 10491 10492 10493
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10494
        >>>     print(x)
S
sneaxiy 已提交
10495 10496 10497 10498 10499 10500
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10501
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10502 10503
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10504 10505
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10506 10507 10508 10509 10510 10511 10512 10513
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10514
    """
S
sneaxiy 已提交
10515
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10516 10517 10518
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10519
        x = [x]
S
sneaxiy 已提交
10520 10521
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10522

S
sneaxiy 已提交
10523 10524 10525
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10526
        out_list = [out]
S
sneaxiy 已提交
10527
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10528
        out_list = out
S
sneaxiy 已提交
10529 10530 10531
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10532

S
sneaxiy 已提交
10533 10534
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10535
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10536 10537

    for each_out in out_list:
S
sneaxiy 已提交
10538 10539
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10540 10541
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10542

S
sneaxiy 已提交
10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10558 10559 10560 10561

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10562 10563
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10564 10565 10566
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10567
        })
S
sneaxiy 已提交
10568
    return out
S
sneaxiy 已提交
10569 10570 10571


# For debug usage
S
sneaxiy 已提交
10572 10573 10574 10575
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10628

M
minqiyang 已提交
10629

M
minqiyang 已提交
10630
def huber_loss(input, label, delta):
10631
    """
M
minqiyang 已提交
10632 10633 10634
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10635 10636 10637 10638

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10639
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10640 10641 10642 10643

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10644
        huber\_loss = 0.5 * (label - input) * (label - input)
10645 10646 10647 10648 10649 10650 10651


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10652
        delta (float): The parameter of huber loss, which controls
10653 10654 10655
                       the range of outliers

    Returns:
M
minqiyang 已提交
10656
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10657 10658 10659 10660 10661

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10662
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10663
    """
M
minqiyang 已提交
10664
    helper = LayerHelper('huber_loss', **locals())
10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10746 10747


C
ceci3 已提交
10748
from .ops import square
C
ceci3 已提交
10749
from .control_flow import equal
C
ceci3 已提交
10750 10751


C
ceci3 已提交
10752 10753 10754
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10755

C
ceci3 已提交
10756
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10757 10758

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10759
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10760 10761 10762 10763 10764
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10765 10766
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10767 10768 10769 10770 10771 10772 10773

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10774 10775 10776 10777 10778 10779 10780 10781
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10782 10783 10784 10785 10786 10787 10788
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10789
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10790 10791
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10792 10793
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10794 10795 10796 10797
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10798 10799 10800
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10801 10802 10803
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss