simple_on_word2vec.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains a simple demo for how to take a model for inference.
 */

19
#include <gflags/gflags.h>
20 21
#include <glog/logging.h>
#include <memory>
T
tensor-tang 已提交
22
#include <thread>
23 24 25 26 27
#include "contrib/inference/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"

DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
28

29 30 31 32 33 34
namespace paddle {
namespace demo {

void Main(bool use_gpu) {
  //# 1. Create PaddlePredictor with a config.
  NativeConfig config;
35 36 37 38 39
  if (FLAGS_dirname.empty()) {
    LOG(INFO) << "Usage: ./simple_on_word2vec --dirname=path/to/your/model";
    exit(1);
  }
  config.model_dir = FLAGS_dirname;
40 41 42 43 44 45 46 47 48 49 50 51
  config.use_gpu = use_gpu;
  config.fraction_of_gpu_memory = 0.15;
  config.device = 0;
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);

  for (int batch_id = 0; batch_id < 3; batch_id++) {
    //# 2. Prepare input.
    int64_t data[4] = {1, 2, 3, 4};

    PaddleTensor tensor{.name = "",
                        .shape = std::vector<int>({4, 1}),
52
                        .data = PaddleBuf(data, sizeof(data)),
53 54 55 56 57 58 59 60 61 62
                        .dtype = PaddleDType::INT64};

    // For simplicity, we set all the slots with the same data.
    std::vector<PaddleTensor> slots(4, tensor);

    //# 3. Run
    std::vector<PaddleTensor> outputs;
    CHECK(predictor->Run(slots, &outputs));

    //# 4. Get output.
63
    PADDLE_ENFORCE(outputs.size(), 1UL);
64 65
    LOG(INFO) << "output buffer size: " << outputs.front().data.length();
    const size_t num_elements = outputs.front().data.length() / sizeof(float);
66 67
    // The outputs' buffers are in CPU memory.
    for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
68
      LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
69 70 71 72
    }
  }
}

T
tensor-tang 已提交
73
void MainThreads(int num_threads, bool use_gpu) {
T
tensor-tang 已提交
74 75 76
  // Multi-threads only support on CPU
  // 0. Create PaddlePredictor with a config.
  NativeConfig config;
77
  config.model_dir = FLAGS_dirname;
T
tensor-tang 已提交
78
  config.use_gpu = use_gpu;
T
tensor-tang 已提交
79 80
  config.fraction_of_gpu_memory = 0.15;
  config.device = 0;
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
  auto main_predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);

  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // 1. clone a predictor which shares the same parameters
      auto predictor = main_predictor->Clone();
      constexpr int num_batches = 3;
      for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
        // 2. Dummy Input Data
        int64_t data[4] = {1, 2, 3, 4};
        PaddleTensor tensor{.name = "",
                            .shape = std::vector<int>({4, 1}),
95
                            .data = PaddleBuf(data, sizeof(data)),
T
tensor-tang 已提交
96 97 98 99 100 101 102
                            .dtype = PaddleDType::INT64};
        std::vector<PaddleTensor> inputs(4, tensor);
        std::vector<PaddleTensor> outputs;
        // 3. Run
        CHECK(predictor->Run(inputs, &outputs));

        // 4. Get output.
103
        PADDLE_ENFORCE(outputs.size(), 1UL);
T
tensor-tang 已提交
104
        LOG(INFO) << "TID: " << tid << ", "
105 106 107
                  << "output buffer size: " << outputs.front().data.length();
        const size_t num_elements =
            outputs.front().data.length() / sizeof(float);
T
tensor-tang 已提交
108 109
        // The outputs' buffers are in CPU memory.
        for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
110
          LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
T
tensor-tang 已提交
111 112 113 114 115 116 117 118 119
        }
      }
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

120 121
}  // namespace demo
}  // namespace paddle
122 123 124 125 126 127 128 129 130 131 132 133 134 135

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  paddle::demo::Main(false /* use_gpu*/);
  paddle::demo::MainThreads(1, false /* use_gpu*/);
  paddle::demo::MainThreads(4, false /* use_gpu*/);
  if (FLAGS_use_gpu) {
    LOG(INFO) << "use_gpu=true";
    paddle::demo::Main(true /*use_gpu*/);
    paddle::demo::MainThreads(1, true /*use_gpu*/);
    paddle::demo::MainThreads(4, true /*use_gpu*/);
  }
  return 0;
}