ssd_loss.py 8.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from ppdet.core.workspace import register
from ..ops import bipartite_match, box_coder, iou_similarity

__all__ = ['SSDLoss']


@register
class SSDLoss(nn.Layer):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    SSDLoss

    Args:
        match_type (str): The type of matching method, should be
           'bipartite' or 'per_prediction'. None ('bipartite') by default.
        overlap_threshold (float32, optional): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
            on the maximum distance, 0.5 by default.
        neg_pos_ratio (float): The ratio of negative samples / positive samples.
        neg_overlap (float): The overlap threshold of negative samples.
        loc_loss_weight (float): The weight of loc_loss.
        conf_loss_weight (float): The weight of conf_loss.
    """

Q
qingqing01 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def __init__(self,
                 match_type='per_prediction',
                 overlap_threshold=0.5,
                 neg_pos_ratio=3.0,
                 neg_overlap=0.5,
                 loc_loss_weight=1.0,
                 conf_loss_weight=1.0):
        super(SSDLoss, self).__init__()
        self.match_type = match_type
        self.overlap_threshold = overlap_threshold
        self.neg_pos_ratio = neg_pos_ratio
        self.neg_overlap = neg_overlap
        self.loc_loss_weight = loc_loss_weight
        self.conf_loss_weight = conf_loss_weight

    def _label_target_assign(self,
                             gt_label,
                             matched_indices,
                             neg_mask=None,
                             mismatch_value=0):
        gt_label = gt_label.numpy()
        matched_indices = matched_indices.numpy()
        if neg_mask is not None:
            neg_mask = neg_mask.numpy()

        batch_size, num_priors = matched_indices.shape
        trg_lbl = np.ones((batch_size, num_priors, 1)).astype('int32')
        trg_lbl *= mismatch_value
        trg_lbl_wt = np.zeros((batch_size, num_priors, 1)).astype('float32')

        for i in range(batch_size):
            col_ids = np.where(matched_indices[i] > -1)
            col_val = matched_indices[i][col_ids]
            trg_lbl[i][col_ids] = gt_label[i][col_val]
            trg_lbl_wt[i][col_ids] = 1.0

        if neg_mask is not None:
            trg_lbl_wt += neg_mask[:, :, np.newaxis]

        return paddle.to_tensor(trg_lbl), paddle.to_tensor(trg_lbl_wt)

    def _bbox_target_assign(self, encoded_box, matched_indices):
        encoded_box = encoded_box.numpy()
        matched_indices = matched_indices.numpy()

        batch_size, num_priors = matched_indices.shape
        trg_bbox = np.zeros((batch_size, num_priors, 4)).astype('float32')
        trg_bbox_wt = np.zeros((batch_size, num_priors, 1)).astype('float32')

        for i in range(batch_size):
            col_ids = np.where(matched_indices[i] > -1)
            col_val = matched_indices[i][col_ids]
            for v, c in zip(col_val.tolist(), col_ids[0]):
                trg_bbox[i][c] = encoded_box[i][v][c]
            trg_bbox_wt[i][col_ids] = 1.0

        return paddle.to_tensor(trg_bbox), paddle.to_tensor(trg_bbox_wt)

    def _mine_hard_example(self,
                           conf_loss,
                           matched_indices,
                           matched_dist,
                           neg_pos_ratio=3.0,
                           neg_overlap=0.5):
        pos = (matched_indices > -1).astype(conf_loss.dtype)
        num_pos = pos.sum(axis=1, keepdim=True)
        neg = (matched_dist < neg_overlap).astype(conf_loss.dtype)

        conf_loss = conf_loss * (1.0 - pos) * neg
        loss_idx = conf_loss.argsort(axis=1, descending=True)
        idx_rank = loss_idx.argsort(axis=1)
        num_negs = []
        for i in range(matched_indices.shape[0]):
            cur_idx = loss_idx[i]
            cur_num_pos = num_pos[i]
            num_neg = paddle.clip(cur_num_pos * neg_pos_ratio, max=pos.shape[1])
            num_negs.append(num_neg)
        num_neg = paddle.stack(num_negs, axis=0).expand_as(idx_rank)
        neg_mask = (idx_rank < num_neg).astype(conf_loss.dtype)
        return neg_mask

127 128 129
    def forward(self, boxes, scores, gt_box, gt_class, anchors):
        boxes = paddle.concat(boxes, axis=1)
        scores = paddle.concat(scores, axis=1)
Q
qingqing01 已提交
130
        prior_boxes = paddle.concat(anchors, axis=0)
131
        gt_label = gt_class.unsqueeze(-1)
132 133
        batch_size, num_priors = scores.shape[:2]
        num_classes = scores.shape[-1] - 1
Q
qingqing01 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

        def _reshape_to_2d(x):
            return paddle.flatten(x, start_axis=2)

        # 1. Find matched bounding box by prior box.
        #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
        #   1.2 Compute matched bounding box by bipartite matching algorithm.
        matched_indices = []
        matched_dist = []
        for i in range(gt_box.shape[0]):
            iou = iou_similarity(gt_box[i], prior_boxes)
            matched_indice, matched_d = bipartite_match(iou, self.match_type,
                                                        self.overlap_threshold)
            matched_indices.append(matched_indice)
            matched_dist.append(matched_d)
        matched_indices = paddle.concat(matched_indices, axis=0)
        matched_indices.stop_gradient = True
        matched_dist = paddle.concat(matched_dist, axis=0)
        matched_dist.stop_gradient = True

        # 2. Compute confidence for mining hard examples
        # 2.1. Get the target label based on matched indices
156 157
        target_label, _ = self._label_target_assign(
            gt_label, matched_indices, mismatch_value=num_classes)
Q
qingqing01 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        confidence = _reshape_to_2d(scores)
        # 2.2. Compute confidence loss.
        # Reshape confidence to 2D tensor.
        target_label = _reshape_to_2d(target_label).astype('int64')
        conf_loss = F.softmax_with_cross_entropy(confidence, target_label)
        conf_loss = paddle.reshape(conf_loss, [batch_size, num_priors])

        # 3. Mining hard examples
        neg_mask = self._mine_hard_example(
            conf_loss,
            matched_indices,
            matched_dist,
            neg_pos_ratio=self.neg_pos_ratio,
            neg_overlap=self.neg_overlap)

        # 4. Assign classification and regression targets
        # 4.1. Encoded bbox according to the prior boxes.
        prior_box_var = paddle.to_tensor(
            np.array(
                [0.1, 0.1, 0.2, 0.2], dtype='float32')).reshape(
                    [1, 4]).expand_as(prior_boxes)
        encoded_bbox = []
        for i in range(gt_box.shape[0]):
            encoded_bbox.append(
                box_coder(
                    prior_box=prior_boxes,
                    prior_box_var=prior_box_var,
                    target_box=gt_box[i],
                    code_type='encode_center_size'))
        encoded_bbox = paddle.stack(encoded_bbox, axis=0)
        # 4.2. Assign regression targets
        target_bbox, target_loc_weight = self._bbox_target_assign(
            encoded_bbox, matched_indices)
        # 4.3. Assign classification targets
        target_label, target_conf_weight = self._label_target_assign(
193 194 195 196
            gt_label,
            matched_indices,
            neg_mask=neg_mask,
            mismatch_value=num_classes)
Q
qingqing01 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        # 5. Compute loss.
        # 5.1 Compute confidence loss.
        target_label = _reshape_to_2d(target_label).astype('int64')
        conf_loss = F.softmax_with_cross_entropy(confidence, target_label)

        target_conf_weight = _reshape_to_2d(target_conf_weight)
        conf_loss = conf_loss * target_conf_weight * self.conf_loss_weight

        # 5.2 Compute regression loss.
        location = _reshape_to_2d(boxes)
        target_bbox = _reshape_to_2d(target_bbox)

        loc_loss = F.smooth_l1_loss(location, target_bbox, reduction='none')
        loc_loss = paddle.sum(loc_loss, axis=-1, keepdim=True)
        target_loc_weight = _reshape_to_2d(target_loc_weight)
        loc_loss = loc_loss * target_loc_weight * self.loc_loss_weight

        # 5.3 Compute overall weighted loss.
        loss = conf_loss + loc_loss
        loss = paddle.reshape(loss, [batch_size, num_priors])
        loss = paddle.sum(loss, axis=1, keepdim=True)
        normalizer = paddle.sum(target_loc_weight)
        loss = paddle.sum(loss / normalizer)

        return loss