reader.py 10.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

K
Kaipeng Deng 已提交
15
import os
Q
qingqing01 已提交
16 17 18 19
import traceback
import six
import sys
if sys.version_info >= (3, 0):
M
Manuel Garcia 已提交
20
    pass
Q
qingqing01 已提交
21
else:
M
Manuel Garcia 已提交
22
    pass
Q
qingqing01 已提交
23 24
import numpy as np

25 26
from paddle.io import DataLoader, DistributedBatchSampler
from paddle.fluid.dataloader.collate import default_collate_fn
Q
qingqing01 已提交
27

M
Manuel Garcia 已提交
28
from ppdet.core.workspace import register
Q
qingqing01 已提交
29
from . import transform
K
Kaipeng Deng 已提交
30
from .shm_utils import _get_shared_memory_size_in_M
Q
qingqing01 已提交
31 32 33 34

from ppdet.utils.logger import setup_logger
logger = setup_logger('reader')

K
Kaipeng Deng 已提交
35 36
MAIN_PID = os.getpid()

Q
qingqing01 已提交
37 38

class Compose(object):
39
    def __init__(self, transforms, num_classes=80):
Q
qingqing01 已提交
40 41 42 43 44
        self.transforms = transforms
        self.transforms_cls = []
        for t in self.transforms:
            for k, v in t.items():
                op_cls = getattr(transform, k)
W
wangxinxin08 已提交
45 46 47 48 49
                f = op_cls(**v)
                if hasattr(f, 'num_classes'):
                    f.num_classes = num_classes

                self.transforms_cls.append(f)
Q
qingqing01 已提交
50 51 52 53 54 55 56

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
57 58 59
                logger.warning("fail to map sample transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
Q
qingqing01 已提交
60 61 62 63 64 65
                raise e

        return data


class BatchCompose(Compose):
66
    def __init__(self, transforms, num_classes=80, collate_batch=True):
Q
qingqing01 已提交
67
        super(BatchCompose, self).__init__(transforms, num_classes)
68
        self.collate_batch = collate_batch
Q
qingqing01 已提交
69 70 71 72 73 74 75

    def __call__(self, data):
        for f in self.transforms_cls:
            try:
                data = f(data)
            except Exception as e:
                stack_info = traceback.format_exc()
76 77 78
                logger.warning("fail to map batch transform [{}] "
                               "with error: {} and stack:\n{}".format(
                                   f, e, str(stack_info)))
Q
qingqing01 已提交
79 80
                raise e

81 82 83 84 85 86 87 88 89
        # remove keys which is not needed by model
        extra_key = ['h', 'w', 'flipped']
        for k in extra_key:
            for sample in data:
                if k in sample:
                    sample.pop(k)

        # batch data, if user-define batch function needed
        # use user-defined here
90
        if self.collate_batch:
91
            batch_data = default_collate_fn(data)
92
        else:
93 94
            batch_data = {}
            for k in data[0].keys():
95 96 97
                tmp_data = []
                for i in range(len(data)):
                    tmp_data.append(data[i][k])
W
wangguanzhong 已提交
98
                if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
99
                    tmp_data = np.stack(tmp_data, axis=0)
100
                batch_data[k] = tmp_data
Q
qingqing01 已提交
101 102 103 104
        return batch_data


class BaseDataLoader(object):
K
Kaipeng Deng 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    """
    Base DataLoader implementation for detection models

    Args:
        sample_transforms (list): a list of transforms to perform
                                  on each sample
        batch_transforms (list): a list of transforms to perform
                                 on batch
        batch_size (int): batch size for batch collating, default 1.
        shuffle (bool): whether to shuffle samples
        drop_last (bool): whether to drop the last incomplete,
                          default False
        num_classes (int): class number of dataset, default 80
W
wangguanzhong 已提交
118 119 120 121 122
        collate_batch (bool): whether to collate batch in dataloader.
            If set to True, the samples will collate into batch according
            to the batch size. Otherwise, the ground-truth will not collate,
            which is used when the number of ground-truch is different in 
            samples.
K
Kaipeng Deng 已提交
123 124 125 126 127 128 129 130 131 132
        use_shared_memory (bool): whether to use shared memory to
                accelerate data loading, enable this only if you
                are sure that the shared memory size of your OS
                is larger than memory cost of input datas of model.
                Note that shared memory will be automatically
                disabled if the shared memory of OS is less than
                1G, which is not enough for detection models.
                Default False.
    """

Q
qingqing01 已提交
133 134 135 136 137 138
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
139
                 num_classes=80,
140
                 collate_batch=True,
K
Kaipeng Deng 已提交
141
                 use_shared_memory=False,
Q
qingqing01 已提交
142 143 144 145 146 147
                 **kwargs):
        # sample transform
        self._sample_transforms = Compose(
            sample_transforms, num_classes=num_classes)

        # batch transfrom 
148 149
        self._batch_transforms = BatchCompose(batch_transforms, num_classes,
                                              collate_batch)
Q
qingqing01 已提交
150 151 152
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.drop_last = drop_last
K
Kaipeng Deng 已提交
153
        self.use_shared_memory = use_shared_memory
Q
qingqing01 已提交
154 155 156 157 158 159
        self.kwargs = kwargs

    def __call__(self,
                 dataset,
                 worker_num,
                 batch_sampler=None,
K
Kaipeng Deng 已提交
160
                 return_list=False):
Q
qingqing01 已提交
161
        self.dataset = dataset
K
Kaipeng Deng 已提交
162
        self.dataset.check_or_download_dataset()
163
        self.dataset.parse_dataset()
Q
qingqing01 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177
        # get data
        self.dataset.set_transform(self._sample_transforms)
        # set kwargs
        self.dataset.set_kwargs(**self.kwargs)
        # batch sampler
        if batch_sampler is None:
            self._batch_sampler = DistributedBatchSampler(
                self.dataset,
                batch_size=self.batch_size,
                shuffle=self.shuffle,
                drop_last=self.drop_last)
        else:
            self._batch_sampler = batch_sampler

178 179 180 181
        # DataLoader do not start sub-process in Windows and Mac
        # system, do not need to use shared memory
        use_shared_memory = self.use_shared_memory and \
                            sys.platform not in ['win32', 'darwin']
K
Kaipeng Deng 已提交
182 183 184 185
        # check whether shared memory size is bigger than 1G(1024M)
        if use_shared_memory:
            shm_size = _get_shared_memory_size_in_M()
            if shm_size is not None and shm_size < 1024.:
186 187
                logger.warning("Shared memory size is less than 1G, "
                               "disable shared_memory in DataLoader")
K
Kaipeng Deng 已提交
188 189
                use_shared_memory = False

Q
qingqing01 已提交
190 191 192 193 194 195
        self.dataloader = DataLoader(
            dataset=self.dataset,
            batch_sampler=self._batch_sampler,
            collate_fn=self._batch_transforms,
            num_workers=worker_num,
            return_list=return_list,
K
Kaipeng Deng 已提交
196
            use_shared_memory=use_shared_memory)
Q
qingqing01 已提交
197 198 199 200 201 202 203 204 205 206 207 208
        self.loader = iter(self.dataloader)

        return self

    def __len__(self):
        return len(self._batch_sampler)

    def __iter__(self):
        return self

    def __next__(self):
        try:
209
            return next(self.loader)
Q
qingqing01 已提交
210 211 212 213 214 215 216 217 218 219 220
        except StopIteration:
            self.loader = iter(self.dataloader)
            six.reraise(*sys.exc_info())

    def next(self):
        # python2 compatibility
        return self.__next__()


@register
class TrainReader(BaseDataLoader):
221 222
    __shared__ = ['num_classes']

Q
qingqing01 已提交
223 224 225 226 227 228
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=True,
                 drop_last=True,
229
                 num_classes=80,
230
                 collate_batch=True,
Q
qingqing01 已提交
231
                 **kwargs):
232 233 234
        super(TrainReader, self).__init__(sample_transforms, batch_transforms,
                                          batch_size, shuffle, drop_last,
                                          num_classes, collate_batch, **kwargs)
Q
qingqing01 已提交
235 236 237 238


@register
class EvalReader(BaseDataLoader):
239 240
    __shared__ = ['num_classes']

Q
qingqing01 已提交
241 242 243 244 245 246
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=True,
247
                 num_classes=80,
Q
qingqing01 已提交
248
                 **kwargs):
K
Kaipeng Deng 已提交
249 250
        super(EvalReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
251
                                         num_classes, **kwargs)
Q
qingqing01 已提交
252 253 254 255


@register
class TestReader(BaseDataLoader):
256 257
    __shared__ = ['num_classes']

Q
qingqing01 已提交
258 259 260 261 262 263
    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
264
                 num_classes=80,
Q
qingqing01 已提交
265
                 **kwargs):
K
Kaipeng Deng 已提交
266 267
        super(TestReader, self).__init__(sample_transforms, batch_transforms,
                                         batch_size, shuffle, drop_last,
268
                                         num_classes, **kwargs)
G
George Ni 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


@register
class EvalMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(EvalMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
285
                                            num_classes, **kwargs)
G
George Ni 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301


@register
class TestMOTReader(BaseDataLoader):
    __shared__ = ['num_classes']

    def __init__(self,
                 sample_transforms=[],
                 batch_transforms=[],
                 batch_size=1,
                 shuffle=False,
                 drop_last=False,
                 num_classes=1,
                 **kwargs):
        super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
                                            batch_size, shuffle, drop_last,
302
                                            num_classes, **kwargs)