api_impl_tester.cc 11.0 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

L
Luo Tao 已提交
18
#include <thread>  // NOLINT
T
tensor-tang 已提交
19

X
Xin Pan 已提交
20
#include "gflags/gflags.h"
L
Luo Tao 已提交
21
#include "paddle/fluid/inference/api/api_impl.h"
X
Xin Pan 已提交
22 23
#include "paddle/fluid/inference/tests/test_helper.h"

J
JiabinYang 已提交
24
#ifdef __clang__
25
#define ACC_DIFF 4e-3
J
JiabinYang 已提交
26
#else
27
#define ACC_DIFF 1e-3
J
JiabinYang 已提交
28 29
#endif

30 31 32
DEFINE_string(word2vec_dirname, "",
              "Directory of the word2vec inference model.");
DEFINE_string(book_dirname, "", "Directory of the book inference model.");
X
Xin Pan 已提交
33 34 35 36 37 38

namespace paddle {

PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
  PaddleTensor pt;

Y
Yu Yang 已提交
39
  if (t->type() == framework::proto::VarType::INT64) {
40
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(int64_t));
X
Xin Pan 已提交
41
    pt.dtype = PaddleDType::INT64;
Y
Fix ut  
Yu Yang 已提交
42
  } else if (t->type() == framework::proto::VarType::FP32) {
43
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(float));
X
Xin Pan 已提交
44
    pt.dtype = PaddleDType::FLOAT32;
45 46 47
  } else if (t->type() == framework::proto::VarType::INT32) {
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(int32_t));
    pt.dtype = PaddleDType::INT32;
X
Xin Pan 已提交
48 49 50 51 52 53 54
  } else {
    LOG(FATAL) << "unsupported type.";
  }
  pt.shape = framework::vectorize2int(t->dims());
  return pt;
}

Y
Yan Chunwei 已提交
55 56
NativeConfig GetConfig() {
  NativeConfig config;
57
  config.model_dir = FLAGS_word2vec_dirname;
X
Xin Pan 已提交
58
  LOG(INFO) << "dirname  " << config.model_dir;
X
Xin Pan 已提交
59
  config.fraction_of_gpu_memory = 0.15;
T
tensor-tang 已提交
60
#ifdef PADDLE_WITH_CUDA
Y
Yan Chunwei 已提交
61
  config.use_gpu = true;
T
tensor-tang 已提交
62 63 64
#else
  config.use_gpu = false;
#endif
X
Xin Pan 已提交
65
  config.device = 0;
66 67
  return config;
}
X
Xin Pan 已提交
68

T
tensor-tang 已提交
69
void MainWord2Vec(bool use_gpu) {
Y
Yan Chunwei 已提交
70 71
  NativeConfig config = GetConfig();
  auto predictor = CreatePaddlePredictor<NativeConfig>(config);
T
tensor-tang 已提交
72
  config.use_gpu = use_gpu;
X
Xin Pan 已提交
73 74 75 76 77 78 79 80 81 82

  framework::LoDTensor first_word, second_word, third_word, fourth_word;
  framework::LoD lod{{0, 1}};
  int64_t dict_size = 2073;  // The size of dictionary

  SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);

83 84 85 86 87 88 89 90 91
  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
  ASSERT_EQ(outputs.size(), 1UL);
92 93
  size_t len = outputs[0].data.length();
  float* data = static_cast<float*>(outputs[0].data.data());
94
  for (size_t j = 0; j < len / sizeof(float); ++j) {
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    ASSERT_LT(data[j], 1.0);
    ASSERT_GT(data[j], -1.0);
  }

  std::vector<paddle::framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&first_word);
  cpu_feeds.push_back(&second_word);
  cpu_feeds.push_back(&third_word);
  cpu_feeds.push_back(&fourth_word);

  framework::LoDTensor output1;
  std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  TestInference<platform::CPUPlace>(config.model_dir, cpu_feeds, cpu_fetchs1);

  float* lod_data = output1.data<float>();
112
  for (int i = 0; i < output1.numel(); ++i) {
J
JiabinYang 已提交
113 114
    EXPECT_LT(lod_data[i] - data[i], ACC_DIFF);
    EXPECT_GT(lod_data[i] - data[i], -ACC_DIFF);
115 116 117
  }
}

T
tensor-tang 已提交
118
void MainImageClassification(bool use_gpu) {
119 120
  int batch_size = 2;
  bool repeat = false;
Y
Yan Chunwei 已提交
121
  NativeConfig config = GetConfig();
T
tensor-tang 已提交
122
  config.use_gpu = use_gpu;
123
  config.model_dir =
124
      FLAGS_book_dirname + "/image_classification_resnet.inference.model";
125 126 127 128 129 130 131 132 133 134

  const bool is_combined = false;
  std::vector<std::vector<int64_t>> feed_target_shapes =
      GetFeedTargetShapes(config.model_dir, is_combined);

  framework::LoDTensor input;
  // Use normilized image pixels as input data,
  // which should be in the range [0.0, 1.0].
  feed_target_shapes[0][0] = batch_size;
  framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
135 136
  SetupTensor<float>(&input, input_dims, static_cast<float>(0),
                     static_cast<float>(1));
137 138 139 140 141 142 143
  std::vector<framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&input);

  framework::LoDTensor output1;
  std::vector<framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

L
Luo Tao 已提交
144 145
  TestInference<platform::CPUPlace, false, true>(
      config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined);
146

Y
Yan Chunwei 已提交
147
  auto predictor = CreatePaddlePredictor(config);
148 149
  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input));
X
Xin Pan 已提交
150 151

  std::vector<PaddleTensor> outputs;
152
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
153
  ASSERT_EQ(outputs.size(), 1UL);
154 155
  size_t len = outputs[0].data.length();
  float* data = static_cast<float*>(outputs[0].data.data());
156 157
  float* lod_data = output1.data<float>();
  for (size_t j = 0; j < len / sizeof(float); ++j) {
J
JiabinYang 已提交
158
    EXPECT_NEAR(lod_data[j], data[j], ACC_DIFF);
X
Xin Pan 已提交
159 160 161
  }
}

T
tensor-tang 已提交
162
void MainThreadsWord2Vec(bool use_gpu) {
T
tensor-tang 已提交
163
  NativeConfig config = GetConfig();
T
tensor-tang 已提交
164
  config.use_gpu = use_gpu;
T
tensor-tang 已提交
165 166
  auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);

167
  // prepare inputs data and reference results
T
tensor-tang 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
  constexpr int num_jobs = 3;
  std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
  std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
  std::vector<framework::LoDTensor> refs(num_jobs);
  for (size_t i = 0; i < jobs.size(); ++i) {
    // each job has 4 words
    jobs[i].resize(4);
    for (size_t j = 0; j < 4; ++j) {
      framework::LoD lod{{0, 1}};
      int64_t dict_size = 2073;  // The size of dictionary
      SetupLoDTensor(&jobs[i][j], lod, static_cast<int64_t>(0), dict_size - 1);
      paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j]));
    }

    // get reference result of each job
    std::vector<paddle::framework::LoDTensor*> ref_feeds;
    std::vector<paddle::framework::LoDTensor*> ref_fetches(1, &refs[i]);
    for (auto& word : jobs[i]) {
      ref_feeds.push_back(&word);
    }
    TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
  }

  // create threads and each thread run 1 job
  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_jobs; ++tid) {
    threads.emplace_back([&, tid]() {
Y
Yan Chunwei 已提交
195
      auto predictor = CreatePaddlePredictor(config);
T
tensor-tang 已提交
196 197 198 199 200 201
      auto& local_inputs = paddle_tensor_feeds[tid];
      std::vector<PaddleTensor> local_outputs;
      ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));

      // check outputs range
      ASSERT_EQ(local_outputs.size(), 1UL);
202 203
      const size_t len = local_outputs[0].data.length();
      float* data = static_cast<float*>(local_outputs[0].data.data());
T
tensor-tang 已提交
204 205 206 207 208 209 210
      for (size_t j = 0; j < len / sizeof(float); ++j) {
        ASSERT_LT(data[j], 1.0);
        ASSERT_GT(data[j], -1.0);
      }

      // check outputs correctness
      float* ref_data = refs[tid].data<float>();
211
      EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
T
tensor-tang 已提交
212
      for (int i = 0; i < refs[tid].numel(); ++i) {
S
update  
superjomn 已提交
213
        EXPECT_NEAR(ref_data[i], data[i], 2e-3);
T
tensor-tang 已提交
214
      }
215 216 217 218 219 220 221
    });
  }
  for (int i = 0; i < num_jobs; ++i) {
    threads[i].join();
  }
}

T
tensor-tang 已提交
222
void MainThreadsImageClassification(bool use_gpu) {
223 224 225
  constexpr int num_jobs = 4;  // each job run 1 batch
  constexpr int batch_size = 1;
  NativeConfig config = GetConfig();
T
tensor-tang 已提交
226
  config.use_gpu = use_gpu;
227
  config.model_dir =
228
      FLAGS_book_dirname + "/image_classification_resnet.inference.model";
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

  auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
  std::vector<framework::LoDTensor> jobs(num_jobs);
  std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
  std::vector<framework::LoDTensor> refs(num_jobs);
  for (size_t i = 0; i < jobs.size(); ++i) {
    // prepare inputs
    std::vector<std::vector<int64_t>> feed_target_shapes =
        GetFeedTargetShapes(config.model_dir, /*is_combined*/ false);
    feed_target_shapes[0][0] = batch_size;
    framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
    SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f);
    paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i]));

    // get reference result of each job
    std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]);
    std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]);
    TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
  }
T
tensor-tang 已提交
248

249 250 251 252
  // create threads and each thread run 1 job
  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_jobs; ++tid) {
    threads.emplace_back([&, tid]() {
Y
Yan Chunwei 已提交
253
      auto predictor = CreatePaddlePredictor(config);
254 255 256 257 258 259
      auto& local_inputs = paddle_tensor_feeds[tid];
      std::vector<PaddleTensor> local_outputs;
      ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));

      // check outputs correctness
      ASSERT_EQ(local_outputs.size(), 1UL);
260 261
      const size_t len = local_outputs[0].data.length();
      float* data = static_cast<float*>(local_outputs[0].data.data());
262
      float* ref_data = refs[tid].data<float>();
263
      EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float));
264
      for (int i = 0; i < refs[tid].numel(); ++i) {
J
JiabinYang 已提交
265
        EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF);
266
      }
T
tensor-tang 已提交
267 268 269 270 271 272 273
    });
  }
  for (int i = 0; i < num_jobs; ++i) {
    threads[i].join();
  }
}

T
tensor-tang 已提交
274 275 276 277 278
TEST(inference_api_native, word2vec_cpu) { MainWord2Vec(false /*use_gpu*/); }
TEST(inference_api_native, word2vec_cpu_threads) {
  MainThreadsWord2Vec(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu) {
S
superjomn 已提交
279
  MainImageClassification(false /*use_gpu*/);
T
tensor-tang 已提交
280 281 282 283 284 285 286
}
TEST(inference_api_native, image_classification_cpu_threads) {
  MainThreadsImageClassification(false /*use_gpu*/);
}

#ifdef PADDLE_WITH_CUDA
TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); }
S
superjomn 已提交
287 288 289 290
// Turn off temporarily for the unstable result.
// TEST(inference_api_native, word2vec_gpu_threads) {
//   MainThreadsWord2Vec(true /*use_gpu*/);
// }
T
tensor-tang 已提交
291
TEST(inference_api_native, image_classification_gpu) {
S
superjomn 已提交
292
  MainImageClassification(true /*use_gpu*/);
T
tensor-tang 已提交
293
}
S
superjomn 已提交
294 295 296 297
// Turn off temporarily for the unstable result.
// TEST(inference_api_native, image_classification_gpu_threads) {
//   MainThreadsImageClassification(true /*use_gpu*/);
// }
T
tensor-tang 已提交
298 299
#endif

300
TEST(PassBuilder, Delete) {
301
  AnalysisConfig config;
302
  config.DisableGpu();
303 304 305 306 307 308
  config.pass_builder()->DeletePass("attention_lstm_fuse_pass");
  const auto& passes = config.pass_builder()->AllPasses();
  auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass");
  ASSERT_EQ(it, passes.end());
}

X
Xin Pan 已提交
309
}  // namespace paddle