MathFunctions.cpp 10.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MathFunctions.h"
#include "hl_matrix_apply.cuh"
Y
Yu Yang 已提交
17
#include "hl_matrix_ops.cuh"
L
liaogang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/utils/DynamicLoad.h"

namespace dynload {

std::once_flag lapack_dso_flag;
void* lapack_dso_handle = nullptr;

/**
 * The following macro definition can generate structs
 * (for each function) to dynamic load lapack routine
 * via operator overloading.
 *
 * note: default dynamic linked libs
 */
#define DYNAMIC_LOAD_LAPACK_WRAP(__name)                                       \
  struct DynLoad__##__name {                                                   \
    template <typename... Args>                                                \
L
liaogang 已提交
35
    auto operator()(Args... args)->decltype(__name(args...)) {                 \
L
liaogang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
      using lapack_func = decltype(__name(args...)) (*)(Args...);              \
      std::call_once(lapack_dso_flag, GetLapackDsoHandle, &lapack_dso_handle); \
      void* p_##__name = dlsym(lapack_dso_handle, #__name);                    \
      return reinterpret_cast<lapack_func>(p_##__name)(args...);               \
    }                                                                          \
  } __name;  // struct DynLoad__##__name

// clang-format off
#ifdef PADDLE_USE_LAPACK
#ifdef PADDLE_USE_ATLAS
  #define LAPACK_ROUTINE_EACH(__macro)        \
    __macro(clapack_sgetrf)                   \
    __macro(clapack_dgetrf)                   \
    __macro(clapack_sgetri)                   \
L
liaogang 已提交
50
    __macro(clapack_dgetri)
L
liaogang 已提交
51 52 53 54 55
#else
  #define LAPACK_ROUTINE_EACH(__macro)        \
    __macro(LAPACKE_sgetrf)                   \
    __macro(LAPACKE_dgetrf)                   \
    __macro(LAPACKE_sgetri)                   \
L
liaogang 已提交
56
    __macro(LAPACKE_dgetri)
L
liaogang 已提交
57 58
#endif
#endif
L
liaogang 已提交
59 60 61

LAPACK_ROUTINE_EACH(DYNAMIC_LOAD_LAPACK_WRAP)

L
liaogang 已提交
62 63
// clang-format on
}  // namespace dynload
Z
zhangjinchao01 已提交
64 65 66

namespace paddle {

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <>
void gemm<float>(const CBLAS_TRANSPOSE transA,
                 const CBLAS_TRANSPOSE transB,
                 const int M,
                 const int N,
                 const int K,
                 const float alpha,
                 const float* A,
                 const int lda,
                 const float* B,
                 const int ldb,
                 const float beta,
                 float* C,
                 const int ldc) {
  cblas_sgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
void gemm<double>(const CBLAS_TRANSPOSE transA,
                  const CBLAS_TRANSPOSE transB,
                  const int M,
                  const int N,
                  const int K,
                  const double alpha,
                  const double* A,
                  const int lda,
                  const double* B,
                  const int ldb,
                  const double beta,
                  double* C,
                  const int ldc) {
  cblas_dgemm(CblasRowMajor,
              transA,
              transB,
              M,
              N,
              K,
              alpha,
              A,
              lda,
              B,
              ldb,
              beta,
              C,
              ldc);
}

template <>
int getrf<float>(const CBLAS_ORDER order,
                 const int M,
                 const int N,
                 float* A,
                 const int lda,
                 int* ipiv) {
134
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
135
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
136
  return dynload::clapack_sgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
137
#else
L
liaogang 已提交
138
  return dynload::LAPACKE_sgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
139
#endif
140 141 142 143
#else
  LOG(FATAL) << "Not implemented";
#endif
  return 0;
L
lzhao4ever 已提交
144 145
}

146 147 148 149 150 151 152
template <>
int getrf<double>(const CBLAS_ORDER order,
                  const int M,
                  const int N,
                  double* A,
                  const int lda,
                  int* ipiv) {
153
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
154
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
155
  return dynload::clapack_dgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
156
#else
L
liaogang 已提交
157
  return dynload::LAPACKE_dgetrf(order, M, N, A, lda, ipiv);
L
lzhao4ever 已提交
158
#endif
159
#else
L
Liu Yiqun 已提交
160
  LOG(FATAL) << "Not implemented";
161 162
#endif
  return 0;
L
lzhao4ever 已提交
163 164
}

165 166 167 168 169 170
template <>
int getri<float>(const CBLAS_ORDER order,
                 const int N,
                 float* A,
                 const int lda,
                 const int* ipiv) {
171
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
172
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
173
  return dynload::clapack_sgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
174
#else
L
liaogang 已提交
175
  return dynload::LAPACKE_sgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
176
#endif
177
#else
L
Liu Yiqun 已提交
178
  LOG(FATAL) << "Not implemented";
179 180
#endif
  return 0;
L
lzhao4ever 已提交
181 182
}

183 184 185 186 187 188
template <>
int getri<double>(const CBLAS_ORDER order,
                  const int N,
                  double* A,
                  const int lda,
                  const int* ipiv) {
189
#ifdef PADDLE_USE_LAPACK
L
lzhao4ever 已提交
190
#ifdef PADDLE_USE_ATLAS
L
liaogang 已提交
191
  return dynload::clapack_dgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
192
#else
L
liaogang 已提交
193
  return dynload::LAPACKE_dgetri(order, N, A, lda, ipiv);
L
lzhao4ever 已提交
194
#endif
195
#else
L
Liu Yiqun 已提交
196
  LOG(FATAL) << "Not implemented";
197 198
#endif
  return 0;
L
lzhao4ever 已提交
199 200
}

201
template <>
Z
zhangjinchao01 已提交
202 203 204 205
void axpy<float>(const int n, const float alpha, const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

206
template <>
Z
zhangjinchao01 已提交
207 208 209 210
void axpy<double>(const int n, const double alpha, const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

211
template <>
Z
zhangjinchao01 已提交
212 213 214 215
float dotProduct<float>(const int n, const float* x, const float* y) {
  return cblas_sdot(n, x, 1, y, 1);
}

216
template <>
Z
zhangjinchao01 已提交
217 218 219 220 221 222
double dotProduct<double>(const int n, const double* x, const double* y) {
  return cblas_ddot(n, x, 1, y, 1);
}

#ifdef PADDLE_USE_MKL

223
template <>
Z
zhangjinchao01 已提交
224 225 226 227
void vExp<float>(const int n, const float* a, float* r) {
  vsExp(n, a, r);
}

228
template <>
Z
zhangjinchao01 已提交
229 230 231 232
void vExp<double>(const int n, const double* a, double* r) {
  vdExp(n, a, r);
}

233
template <>
Z
zhangjinchao01 已提交
234 235 236 237
void vPow<float>(const int n, const float* a, const float b, float* r) {
  vsPowx(n, a, b, r);
}

238
template <>
Z
zhangjinchao01 已提交
239 240 241 242
void vPow<double>(const int n, const double* a, const double b, double* r) {
  vdPowx(n, a, b, r);
}

243
template <>
Z
zhangjinchao01 已提交
244 245 246 247
void vLog<float>(const int n, const float* a, float* r) {
  vsLn(n, a, r);
}

248
template <>
Z
zhangjinchao01 已提交
249 250 251 252
void vLog<double>(const int n, const double* a, double* r) {
  vdLn(n, a, r);
}

253
template <>
Z
zhangjinchao01 已提交
254 255 256 257
void vAdd<float>(const int n, const float* a, const float* b, float* r) {
  vsAdd(n, a, b, r);
}

258
template <>
Z
zhangjinchao01 已提交
259 260 261 262
void vAdd<double>(const int n, const double* a, const double* b, double* r) {
  vdAdd(n, a, b, r);
}

263
template <>
Z
zhangjinchao01 已提交
264 265 266 267
void vInvSqrt<float>(const int n, const float* a, float* r) {
  vsInvSqrt(n, a, r);
}

268
template <>
Z
zhangjinchao01 已提交
269 270 271 272
void vInvSqrt<double>(const int n, const double* a, double* r) {
  vdInvSqrt(n, a, r);
}

273
template <>
Z
zhangjinchao01 已提交
274 275 276 277
void vLog1p<float>(const int n, const float* a, float* r) {
  vsLog1p(n, a, r);
}

278
template <>
Z
zhangjinchao01 已提交
279 280 281 282
void vLog1p<double>(const int n, const double* a, double* r) {
  vdLog1p(n, a, r);
}

283
template <>
Z
zhangjinchao01 已提交
284 285 286 287
void vTanh<float>(const int n, const float* a, float* r) {
  vsTanh(n, a, r);
}

288
template <>
Z
zhangjinchao01 已提交
289 290 291 292 293 294
void vTanh<double>(const int n, const double* a, double* r) {
  vdTanh(n, a, r);
}
#else

DEFINE_MATRIX_BINARY_OP(vExp, b = std::exp(a));
295
template <class T>
Z
zhangjinchao01 已提交
296 297
void vExp(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vExp<T>, 0, 0>(
298
      binary::vExp<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
299 300 301
}

DEFINE_MATRIX_BINARY_OP(vLog, b = std::log(a));
302
template <class T>
Z
zhangjinchao01 已提交
303 304
void vLog(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog<T>, 0, 0>(
305
      binary::vLog<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
306 307 308
}

DEFINE_MATRIX_BINARY_OP(vInvSqrt, b = 1.0f / std::sqrt(a));
309
template <class T>
Z
zhangjinchao01 已提交
310 311
void vInvSqrt(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vInvSqrt<T>, 0, 0>(
312
      binary::vInvSqrt<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
313 314 315
}

DEFINE_MATRIX_BINARY_OP(vLog1p, b = std::log(1.0f + a));
316
template <class T>
Z
zhangjinchao01 已提交
317 318
void vLog1p(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog1p<T>, 0, 0>(
319
      binary::vLog1p<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
320 321
}

322 323 324 325
DEFINE_MATRIX_BINARY_OP(vTanh, T tmp = -2.0 * a;
                        tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
                        b = 2.0 / (1.0 + std::exp(tmp)) - 1.0);
template <class T>
Z
zhangjinchao01 已提交
326 327
void vTanh(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vTanh<T>, 0, 0>(
328
      binary::vTanh<T>(), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
329 330 331
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(vPow, ONE_PARAMETER, b = std::pow(a, p));
332
template <class T>
Z
zhangjinchao01 已提交
333 334
void vPow(const int n, const T* a, const T b, T* r) {
  hl_cpu_apply_binary_op<T, binary::vPow<T>, 0, 0>(
335
      binary::vPow<T>(b), const_cast<T*>(a), r, 1, n, n, n);
Z
zhangjinchao01 已提交
336 337 338
}

DEFINE_MATRIX_TERNARY_OP(vAdd, c = a + b);
339
template <class T>
Z
zhangjinchao01 已提交
340 341
void vAdd(const int n, const T* a, const T* b, T* r) {
  hl_cpu_apply_ternary_op<T, ternary::vAdd<T>, 0, 0>(ternary::vAdd<T>(),
342 343 344 345 346 347 348 349
                                                     const_cast<T*>(a),
                                                     const_cast<T*>(b),
                                                     r,
                                                     1,
                                                     n,
                                                     n,
                                                     n,
                                                     n);
Z
zhangjinchao01 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

template void vExp(const int n, const float* a, float* r);
template void vExp(const int n, const double* a, double* r);
template void vLog(const int n, const float* a, float* r);
template void vLog(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const float* a, float* r);
template void vLog1p(const int n, const float* a, float* r);
template void vLog1p(const int n, const double* a, double* r);
template void vTanh(const int n, const float* a, float* r);
template void vTanh(const int n, const double* a, double* r);
template void vPow(const int n, const float* a, const float b, float* r);
template void vPow(const int n, const double* a, const double b, double* r);
template void vAdd(const int n, const float* a, const float* b, float* r);
template void vAdd(const int n, const double* a, const double* b, double* r);

#endif

}  // namespace paddle