# Focal Loss for Dense Object Detection## IntroductionWe reproduce RetinaNet proposed in paper Focal Loss for Dense Object Detection.## Model Zoo| Backbone | Model | mstrain | imgs/GPU | lr schedule | FPS | Box AP | download | config || ------------ | --------- | ------- | -------- | ----------- | --- | ------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------- || ResNet50-FPN | RetinaNet | Yes | 4 | 1x | --- | 37.5 | [model](https://bj.bcebos.com/v1/paddledet/models/retinanet_r50_fpn_mstrain_1x_coco.pdparams)\|[log](https://bj.bcebos.com/v1/paddledet/logs/retinanet_r50_fpn_mstrain_1x_coco.log) | retinanet_r50_fpn_mstrain_1x_coco.yml |**Notes:**- All above models are trained on COCO train2017 with 4 GPUs and evaludated on val2017. Box AP=`mAP(IoU=0.5:0.95)`.- Config `configs/retinanet/retinanet_r50_fpn_1x_coco.yml` is for 8 GPUs and `configs/retinanet/retinanet_r50_fpn_mstrain_1x_coco.yml` is for 4 GPUs (mind the difference of train batch size).## Citation```latex@inproceedings{lin2017focal, title={Focal loss for dense object detection}, author={Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Doll{\'a}r, Piotr}, booktitle={Proceedings of the IEEE international conference on computer vision}, year={2017}}```