PaddleYOLO_MODEL.md 50.7 KB
Newer Older
F
Feng Ni 已提交
1
简体中文 | [English](MODEL_ZOO_en.md)
F
Feng Ni 已提交
2

F
Feng Ni 已提交
3
# [**PaddleYOLO**](https://github.com/PaddlePaddle/PaddleYOLO)
F
Feng Ni 已提交
4 5 6 7

## 内容
- [简介](#简介)
- [模型库](#模型库)
F
Feng Ni 已提交
8
    - [PP-YOLOE+](#PP-YOLOE+)
F
Feng Ni 已提交
9 10
    - [YOLOX](#YOLOX)
    - [YOLOv5](#YOLOv5)
F
Feng Ni 已提交
11
    - [YOLOv6](#YOLOv6)
F
Feng Ni 已提交
12
    - [YOLOv7](#YOLOv7)
F
Feng Ni 已提交
13 14
    - [RTMDet](#RTMDet)
    - [VOC](#VOC)
F
Feng Ni 已提交
15 16 17 18 19 20
- [使用指南](#使用指南)
    - [一键运行全流程](#一键运行全流程)
    - [自定义数据集](#自定义数据集)

## 简介

F
Feng Ni 已提交
21
**PaddleYOLO**是基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的YOLO系列模型库,**只包含YOLO系列模型的相关代码**,支持`YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`,`RTMDet`等模型,欢迎一起使用和建设!
F
Feng Ni 已提交
22

F
Feng Ni 已提交
23 24 25 26 27
## 更新日志
* 【2022/09/29】支持[RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)预测和部署;
* 【2022/09/26】发布[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)模型套件;
* 【2022/09/19】支持[`YOLOv6`](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)新版,包括n/t/s/m/l模型;
* 【2022/08/23】发布`YOLOSeries`代码库: 支持`YOLOv3`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`等YOLO模型,支持`ConvNeXt`骨干网络高精度版`PP-YOLOE`,`YOLOX``YOLOv5`等模型,支持PaddleSlim无损加速量化训练`PP-YOLOE`,`YOLOv5`,`YOLOv6``YOLOv7`等模型,详情可阅读[此文章](https://mp.weixin.qq.com/s/Hki01Zs2lQgvLSLWS0btrA)
F
Feng Ni 已提交
28

F
Feng Ni 已提交
29 30

**注意:**
F
Feng Ni 已提交
31 32 33 34
 - **PaddleYOLO**代码库协议为**GPL 3.0**[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)这3类模型代码不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection),其余YOLO模型推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)中使用,**会最先发布PP-YOLO系列特色检测模型的最新进展**;;
 - **PaddleYOLO**代码库**推荐使用paddlepaddle-2.3.2以上的版本**,请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载对应适合版本,**Windows平台请安装paddle develop版本**
 - PaddleYOLO 的[Roadmap](https://github.com/PaddlePaddle/PaddleYOLO/issues/44) issue用于收集用户的需求,欢迎提出您的建议和需求。
 - 训练**自定义数据集**请参照[文档](#自定义数据集)[issue](https://github.com/PaddlePaddle/PaddleYOLO/issues/43)。请首先**确保加载了COCO权重作为预训练**,YOLO检测模型建议**总`batch_size`至少大于`64`**去训练,如果资源不够请**换小模型****减小模型的输入尺度**,为了保障较高检测精度,**尽量不要尝试单卡训和总`batch_size`小于`32`训**
F
Feng Ni 已提交
35 36 37 38


## 模型库

F
Feng Ni 已提交
39
### [PP-YOLOE+](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe)
F
Feng Ni 已提交
40

F
Feng Ni 已提交
41 42
<details>
<summary> 基础模型 </summary>
F
Feng Ni 已提交
43

F
Feng Ni 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
| 网络模型        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params(M) | FLOPs(G) |    下载链接       | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| PP-YOLOE-s   |     640   |    32    |  400e    |    2.9    |       43.4        |        60.0         |   7.93    |  17.36   | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml)                   |
| PP-YOLOE-s   |     640   |    32    |  300e    |    2.9    |       43.0        |        59.6         |   7.93    |  17.36   | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml)                   |
| PP-YOLOE-m   |      640  |    28    |  300e    |    6.0    |       49.0        |        65.9         |   23.43   |  49.91   | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml)                   |
| PP-YOLOE-l   |      640  |    20    |  300e    |    8.7    |       51.4        |        68.6         |   52.20   |  110.07 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml)                   |
| PP-YOLOE-x   |      640  |    16    |  300e    |    14.9   |       52.3        |        69.5         |   98.42   |  206.59  |[model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_crn_x_300e_coco.yml)    |
| PP-YOLOE-tiny ConvNeXt| 640 |    16      |   36e    | -   |       44.6        |        63.3         |   33.04   |  13.87 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_convnext_tiny_36e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/convnext/ppyoloe_convnext_tiny_36e_coco.yml) |
| **PP-YOLOE+_s**   |     640   |    8    |  80e    |    2.9    |     **43.7**    |      **60.6**     |   7.93    |  17.36   | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml)                   |
| **PP-YOLOE+_m**   |      640  |    8    |  80e    |    6.0    |     **49.8**    |      **67.1**     |   23.43   |  49.91   | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_plus_crn_m_80e_coco.yml)                   |
| **PP-YOLOE+_l**   |      640  |    8    |  80e    |    8.7    |     **52.9**    |      **70.1**     |   52.20   |  110.07 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml)                   |
| **PP-YOLOE+_x**   |      640  |    8    |  80e    |    14.9   |     **54.7**    |      **72.0**     |   98.42   |  206.59  |[model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml)                   |

</details>

<details>
<summary> 部署模型  </summary>
F
Feng Ni 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
| PP-YOLOE-s(400epoch) |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.onnx) |
| PP-YOLOE-s |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.onnx) |
| PP-YOLOE-m |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.onnx) |
| PP-YOLOE-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.onnx) |
| PP-YOLOE-x |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.onnx) |
| **PP-YOLOE+_s** |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.onnx) |
| **PP-YOLOE+_m** |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.onnx) |
| **PP-YOLOE+_l** |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.onnx) |
| **PP-YOLOE+_x** |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.onnx) |

F
Feng Ni 已提交
74 75 76
</details>

### [YOLOX](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox)
F
Feng Ni 已提交
77

F
Feng Ni 已提交
78 79
<details>
<summary> 基础模型 </summary>
F
Feng Ni 已提交
80

F
Feng Ni 已提交
81
| 网络模型        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params(M) | FLOPs(G) |    下载链接       | 配置文件 |
F
Feng Ni 已提交
82
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
F
Feng Ni 已提交
83 84 85 86 87 88
| YOLOX-nano     |  416     |    8      |   300e    |     2.3    |  26.1  |  42.0 |  0.91  |  1.08 | [model](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_nano_300e_coco.yml) |
| YOLOX-tiny     |  416     |    8      |   300e    |     2.8    |  32.9  |  50.4 |  5.06  |  6.45 | [model](https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_tiny_300e_coco.yml) |
| YOLOX-s        |  640     |    8      |   300e    |     3.0    |  40.4  |  59.6 |  9.0  |  26.8 | [model](https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_s_300e_coco.yml) |
| YOLOX-m        |  640     |    8      |   300e    |     5.8    |  46.9  |  65.7 |  25.3  |  73.8 | [model](https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_m_300e_coco.yml) |
| YOLOX-l        |  640     |    8      |   300e    |     9.3    |  50.1  |  68.8 |  54.2  |  155.6 | [model](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_l_300e_coco.yml) |
| YOLOX-x        |  640     |    8      |   300e    |     16.6   |  **51.8**  |  **70.6** |  99.1  |  281.9 | [model](https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_x_300e_coco.yml) |
F
Feng Ni 已提交
89
 YOLOX-cdn-tiny    |  416     |    8      |   300e    |     1.9    |  32.4  |  50.2 |  5.03 |  6.33  | [model](https://paddledet.bj.bcebos.com/models/yolox_cdn_tiny_300e_coco.pdparams) | [config](c../../onfigs/yolox/yolox_cdn_tiny_300e_coco.yml) |
F
Feng Ni 已提交
90 91
| YOLOX-crn-s     |  640     |    8      |   300e    |     3.0    |  40.4  |  59.6 |  7.7  |  24.69 | [model](https://paddledet.bj.bcebos.com/models/yolox_crn_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox/yolox_crn_s_300e_coco.yml) |
| YOLOX-s ConvNeXt|  640     |    8      |   36e     |     -      |  44.6  |  65.3 |  36.2 |  27.52 | [model](https://paddledet.bj.bcebos.com/models/yolox_convnext_s_36e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/convnext/yolox_convnext_s_36e_coco.yml) |
F
Feng Ni 已提交
92

F
Feng Ni 已提交
93 94 95 96
</details>

<details>
<summary> 部署模型  </summary>
F
Feng Ni 已提交
97 98 99 100 101 102 103 104 105 106

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOx-nano |  416   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.onnx) |
| YOLOx-tiny |  416   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.onnx) |
| YOLOx-s |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.onnx) |
| YOLOx-m |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.onnx) |
| YOLOx-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.onnx) |
| YOLOx-x |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.onnx) |

F
Feng Ni 已提交
107
</details>
F
Feng Ni 已提交
108

F
Feng Ni 已提交
109
### [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5)
F
Feng Ni 已提交
110

F
Feng Ni 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
<details>
<summary> 基础模型 </summary>

| 网络模型        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params(M) | FLOPs(G) |    下载链接       | 配置文件 |
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
| YOLOv5-n        |  640     |    16     |   300e    |     2.6    |  28.0  | 45.7 |  1.87  | 4.52 | [model](https://paddledet.bj.bcebos.com/models/yolov5_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_n_300e_coco.yml) |
| YOLOv5-s        |  640     |    16      |   300e    |     3.2    |  37.6  | 56.7 |  7.24  | 16.54 | [model](https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_s_300e_coco.yml) |
| YOLOv5-m        |  640     |    16      |   300e    |     5.2    |  45.4  | 64.1 |  21.19  | 49.08 | [model](https://paddledet.bj.bcebos.com/models/yolov5_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_m_300e_coco.yml) |
| YOLOv5-l        |  640     |    16      |   300e    |     7.9    |  48.9  | 67.1 |  46.56  | 109.32 | [model](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_l_300e_coco.yml) |
| YOLOv5-x        |  640     |    16      |   300e    |     13.7   |  50.6  | 68.7 |  86.75  | 205.92 | [model](https://paddledet.bj.bcebos.com/models/yolov5_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_x_300e_coco.yml) |
| YOLOv5-s ConvNeXt|  640    |    8      |   36e     |     -      |  42.4  |  65.3  |  34.54 |  17.96 | [model](https://paddledet.bj.bcebos.com/models/yolov5_convnext_s_36e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_convnext_s_36e_coco.yml) |
| *YOLOv5p6-n        |  1280     |    16     |   300e    |     -    |  35.9  | 54.2 |  3.25  | 9.23 | [model](https://paddledet.bj.bcebos.com/models/yolov5p6_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5p6_n_300e_coco.yml) |
| *YOLOv5p6-s        |  1280     |    16     |   300e    |     -    |  44.5  | 63.3 |  12.63  | 33.81 | [model](https://paddledet.bj.bcebos.com/models/yolov5p6_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5p6_s_300e_coco.yml) |
| *YOLOv5p6-m        |  1280     |    16     |   300e    |     -    |  51.1  | 69.0 |  35.73  | 100.21 | [model](https://paddledet.bj.bcebos.com/models/yolov5p6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5p6_m_300e_coco.yml) |
| *YOLOv5p6-l        |  1280     |    8      |   300e    |     -    |  53.4  | 71.0 |  76.77  | 223.09 | [model](https://paddledet.bj.bcebos.com/models/yolov5p6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5p6_l_300e_coco.yml) |
| *YOLOv5p6-x        |  1280     |    8      |   300e    |     -    |  54.7  | 72.4 |  140.80 | 420.03 | [model](https://paddledet.bj.bcebos.com/models/yolov5p6_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5p6_x_300e_coco.yml) |

</details>

<details>
<summary> 部署模型  </summary>
F
Feng Ni 已提交
132 133 134 135 136 137 138 139 140

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOv5-n |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.onnx) |
| YOLOv5-s |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.onnx) |
| YOLOv5-m |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.onnx) |
| YOLOv5-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.onnx) |
| YOLOv5-x |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.onnx) |

F
Feng Ni 已提交
141 142 143
</details>

### [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)
F
Feng Ni 已提交
144

F
Feng Ni 已提交
145 146
<details>
<summary> 基础模型 </summary>
F
Feng Ni 已提交
147

F
Feng Ni 已提交
148
| 网络网络        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) |   mAP  |   AP50  | Params(M) | FLOPs(G) |  下载链接       | 配置文件 |
F
Feng Ni 已提交
149
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
F
Feng Ni 已提交
150 151 152 153 154 155 156
| YOLOv6-n       |  416     |    32      |   400e    |     1.0    |  31.1 |    45.3 |  4.74  | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_416_400e_coco.yml) |
| YOLOv6-n       |  640     |    32      |   400e    |     1.3    |  36.1 |    51.9 |  4.74  | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_400e_coco.yml) |
| *YOLOv6-t       |  640     |    32      |   400e    |     2.1    |  40.7 |    57.4 |  10.63  | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_t_400e_coco.yml) |
| *YOLOv6-s       |  640     |    32      |   400e    |     2.6    |  43.4 |    60.5 |  18.87  | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_400e_coco.yml) |
| *YOLOv6-m       |  640     |    32      |   300e    |     5.0    |  49.0 |    66.5 |  37.17  | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) |
| *YOLOv6-l       |  640     |    32      |   300e    |     7.9    |  51.0 |    68.9 |  63.54  | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) |
| *YOLOv6-l-silu  |  640     |    32      |   300e    |     9.6    |  51.7 |    69.6 |  58.59  | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_silu_300e_coco.yml) |
F
Feng Ni 已提交
157

F
Feng Ni 已提交
158
</details>
F
Feng Ni 已提交
159

F
Feng Ni 已提交
160 161
<details>
<summary> 部署模型  </summary>
F
Feng Ni 已提交
162 163 164

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
F
Feng Ni 已提交
165 166 167 168 169 170 171 172
| yolov6-n |  416   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.onnx) |
| yolov6-n |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.onnx) |
| yolov6-t |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.onnx) |
| yolov6-s |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.onnx) |
| yolov6-m |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) |
| yolov6-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) |
| yolov6-l-silu |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.onnx) |

F
Feng Ni 已提交
173
</details>
F
Feng Ni 已提交
174

F
Feng Ni 已提交
175
### [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)
F
Feng Ni 已提交
176

F
Feng Ni 已提交
177 178 179 180
<details>
<summary> 基础模型 </summary>

| 网络模型        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params(M) | FLOPs(G) |    下载链接       | 配置文件 |
F
Feng Ni 已提交
181
| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
F
Feng Ni 已提交
182 183 184 185 186 187 188 189 190
| YOLOv7-L        |  640     |    32      |   300e    |     7.4     |  51.0  | 70.2 |  37.62  | 106.08 |[model](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_l_300e_coco.yml) |
| *YOLOv7-X        |  640     |    32      |   300e    |     12.2    |  53.0  | 70.8 |  71.34  | 190.08 | [model](https://paddledet.bj.bcebos.com/models/yolov7_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_x_300e_coco.yml) |
| *YOLOv7P6-W6     |  1280    |    16      |   300e    |     25.5    |  54.4  | 71.8 |  70.43  | 360.26 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_w6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_w6_300e_coco.yml) |
| *YOLOv7P6-E6     |  1280    |    10      |   300e    |     31.1    |  55.7  | 73.0 |  97.25  | 515.4 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6_300e_coco.yml) |
| *YOLOv7P6-D6     |  1280    |    8      |   300e    |     37.4    | 56.1  | 73.3 |  133.81  | 702.92 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_d6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_d6_300e_coco.yml) |
| *YOLOv7P6-E6E    |  1280    |    6      |   300e    |     48.7    |  56.5  | 73.7 |  151.76  | 843.52 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6e_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6e_300e_coco.yml) |
| YOLOv7-tiny     |  640     |    32      |   300e    |     -   |  37.3 | 54.5 |  6.23  | 6.90 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_300e_coco.yml) |
| YOLOv7-tiny     |  416     |    32      |   300e    |     -    | 33.3 | 49.5 |  6.23  | 2.91 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_416_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_416_300e_coco.yml) |
| YOLOv7-tiny     |  320     |    32      |   300e    |     -    | 29.1 | 43.8 |  6.23  | 1.73 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_320_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_320_300e_coco.yml) |
F
Feng Ni 已提交
191

F
Feng Ni 已提交
192
</details>
F
Feng Ni 已提交
193

F
Feng Ni 已提交
194 195
<details>
<summary> 部署模型  </summary>
F
Feng Ni 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
| YOLOv7-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.onnx) |
| YOLOv7-x |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.onnx) |
| YOLOv7P6-W6 |  1280   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.onnx) |
| YOLOv7P6-E6 |  1280   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.onnx) |
| YOLOv7P6-D6 |  1280   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.onnx) |
| YOLOv7P6-E6E |  1280   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.onnx) |
| YOLOv7-tiny |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.onnx) |
| YOLOv7-tiny |  416   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.onnx) |
| YOLOv7-tiny |  320   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.onnx) |

F
Feng Ni 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
</details>

### [RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)

<details>
<summary> 基础模型 </summary>

| 网络网络        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) |   mAP  |   AP50  | Params(M) | FLOPs(G) |  下载链接       | 配置文件 |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
| *RTMDet-t       |  640     |    32      |   300e    |    2.8   |  40.9 | 57.9 |  4.90  | 16.21 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_t_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_t_300e_coco.yml) |
| *RTMDet-s       |  640     |    32      |   300e    |    3.3   |  44.5 | 62.0 |  8.89  | 29.71 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_s_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_s_300e_coco.yml) |
| *RTMDet-m       |  640     |    32      |   300e    |    6.4   |  49.1 | 66.8 |  24.71  | 78.47 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_m_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_m_300e_coco.yml) |
| *RTMDet-l       |  640     |    32      |   300e    |    10.2  |  51.2 | 68.8 |  52.31  | 160.32 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_l_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_l_300e_coco.yml) |
| *RTMDet-x       |  640     |    32      |   300e    |    18.0  |  52.6 | 70.4 |  94.86  | 283.12 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_x_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_x_300e_coco.yml) |

</details>

<details>
<summary> 部署模型  </summary>

| 网络模型     | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS)  |
| :-------- | :--------: | :---------------------: | :----------------: |
| RTMDet-t |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_t_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_t_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_t_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_t_300e_coco_wo_nms.onnx) |
| RTMDet-s |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_s_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_s_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_s_300e_coco_wo_nms.onnx) |
| RTMDet-m |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_m_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_m_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_m_300e_coco_wo_nms.onnx) |
| RTMDet-l |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_l_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_l_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_l_300e_coco_wo_nms.onnx) |
| RTMDet-x |  640   | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_x_300e_coco_w_nms.zip) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_x_300e_coco_w_nms.onnx) &#124; [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/rtmdet/rtmdet_x_300e_coco_wo_nms.onnx) |

</details>

F
Feng Ni 已提交
239 240 241

### **注意:**
 - 所有模型均使用COCO train2017作为训练集,在COCO val2017上验证精度,模型前带*表示训练更新中。
F
Feng Ni 已提交
242 243 244
 - 具体精度和速度细节请查看[PP-YOLOE](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe),[YOLOX](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolox),[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)**其中YOLOv5,YOLOv6,YOLOv7评估并未采用`multi_label`形式**
- 模型推理耗时(ms)为TensorRT-FP16下测试的耗时,**不包含数据预处理和模型输出后处理(NMS)的耗时**。测试采用**单卡Tesla T4 GPU,batch size=1**,测试环境为**paddlepaddle-2.3.2**, **CUDA 11.2**, **CUDNN 8.2**, **GCC-8.2**, **TensorRT 8.0.3.4**,具体请参考各自模型主页。
- **统计FLOPs(G)和Params(M)**,首先安装[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), `pip install paddleslim`,然后设置[runtime.yml](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/runtime.yml)`print_flops: True``print_params: True`,并且注意确保是**单尺度**下如640x640,**打印的是MACs,FLOPs=2*MACs**
F
Feng Ni 已提交
245 246 247 248 249 250 251 252 253 254 255 256
 - 各模型导出后的权重以及ONNX,分为**带(w)****不带(wo)**后处理NMS,都提供了下载链接,请参考各自模型主页下载。`w_nms`表示**带NMS后处理**,可以直接使用预测出最终检测框结果如```python deploy/python/infer.py --model_dir=ppyoloe_crn_l_300e_coco_w_nms/ --image_file=demo/000000014439.jpg --device=GPU````wo_nms`表示**不带NMS后处理**,是**测速**时使用,如需预测出检测框结果需要找到**对应head中的后处理相关代码**并修改为如下:
 ```
        if self.exclude_nms:
            # `exclude_nms=True` just use in benchmark for speed test
            # return pred_bboxes.sum(), pred_scores.sum() # 原先是这行,现在注释
            return pred_bboxes, pred_scores # 新加这行,表示保留进NMS前的原始结果
        else:
            bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
            return bbox_pred, bbox_num
 ```
并重新导出,使用时再**另接自己写的NMS后处理**
 - 基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)对YOLO系列模型进行量化训练,可以实现精度基本无损,速度普遍提升30%以上,具体请参照[模型自动化压缩工具ACT](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/example/auto_compression)
F
Feng Ni 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279


### [VOC](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc)

<details>
<summary> 基础模型 </summary>

| 网络模型        | 输入尺寸   | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP(0.50,11point) | Params(M) | FLOPs(G) |    下载链接       | 配置文件 |
| :-----------: | :-------: | :-------: | :------: | :------------: | :---------------: | :------------------: |:-----------------: | :------: | :------: |
| YOLOv5-s        |  640     |    16     |   60e    |     3.2   |  80.3 |  7.24  | 16.54 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov5_s_60e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov5_s_60e_voc.yml) |
| YOLOv6-s        |  640     |    32     |   40e    |     2.7   |  84.7 |  18.87 | 48.35 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov6_s_40e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov6_s_40e_voc.yml) |
| YOLOv7-tiny     |  640     |    32     |   60e    |     2.6   |  80.2 |  6.23  | 6.90 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov7_tiny_60e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov7_tiny_60e_voc.yml) |
| YOLOX-s         |  640     |    8      |   40e    |     3.0   |  82.9 |  9.0   |  26.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_s_40e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolox_s_40e_voc.yml) |
| PP-YOLOE+_s     |  640     |    8      |   30e    |     2.9   |  86.7 |  7.93  |  17.36 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_30e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/ppyoloe_plus_crn_s_30e_voc.yml) |

</details>

**注意:**
  - VOC数据集训练的mAP为`mAP(IoU=0.5)`的结果,且评估未使用`multi_label`等trick;
  - 所有YOLO VOC模型均加载各自模型的COCO权重作为预训练,各个配置文件的配置均为默认使用8卡GPU,可作为自定义数据集设置参考,具体精度会因数据集而异;
  - YOLO检测模型建议**总`batch_size`至少大于`64`**去训练,如果资源不够请**换小模型****减小模型的输入尺度**,为了保障较高检测精度,**尽量不要尝试单卡训和总`batch_size`小于`64`训**
  - Params(M)和FLOPs(G)均为训练时所测,YOLOv7没有s模型,故选用tiny模型;
  - TRT-FP16-Latency(ms)测速相关请查看各YOLO模型的config的主页;
F
Feng Ni 已提交
280 281 282 283 284 285 286 287 288 289


## 使用指南

下载MS-COCO数据集,[官网](https://cocodataset.org)下载地址为: [annotations](http://images.cocodataset.org/annotations/annotations_trainval2017.zip), [train2017](http://images.cocodataset.org/zips/train2017.zip), [val2017](http://images.cocodataset.org/zips/val2017.zip), [test2017](http://images.cocodataset.org/zips/test2017.zip)
PaddleDetection团队提供的下载链接为:[coco](https://bj.bcebos.com/v1/paddledet/data/coco.tar)(共约22G)[test2017](https://bj.bcebos.com/v1/paddledet/data/cocotest2017.zip),注意test2017可不下载,评估是使用的val2017。


### **一键运行全流程**

F
Feng Ni 已提交
290 291 292 293 294 295 296
将以下命令写在一个脚本文件里如```run.sh```,一键运行命令为:```sh run.sh```,也可命令行一句句去运行。

```bash
model_name=ppyoloe # 可修改,如 yolov7
job_name=ppyoloe_plus_crn_l_300e_coco # 可修改,如 yolov7_tiny_300e_coco

config=configs/${model_name}/${job_name}.yml
F
Feng Ni 已提交
297 298 299 300 301
log_dir=log_dir/${job_name}
# weights=https://bj.bcebos.com/v1/paddledet/models/${job_name}.pdparams
weights=output/${job_name}/model_final.pdparams

# 1.训练(单卡/多卡)
F
Feng Ni 已提交
302 303
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config} --eval --amp
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp
F
Feng Ni 已提交
304 305

# 2.评估
F
Feng Ni 已提交
306
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ${config} -o weights=${weights} --classwise
F
Feng Ni 已提交
307 308

# 3.直接预测
F
Feng Ni 已提交
309
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ${config} -o weights=${weights} --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5
F
Feng Ni 已提交
310 311

# 4.导出模型
F
Feng Ni 已提交
312
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ${config} -o weights=${weights} # exclude_nms=True trt=True
F
Feng Ni 已提交
313 314

# 5.部署预测
F
Feng Ni 已提交
315
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU
F
Feng Ni 已提交
316

F
Feng Ni 已提交
317 318
# 6.部署测速,加 “--run_mode=trt_fp16” 表示在TensorRT FP16模式下测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
F
Feng Ni 已提交
319 320 321 322 323 324 325 326 327 328

# 7.onnx导出
paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ${job_name}.onnx

# 8.onnx测速
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp16
```

- 如果想切换模型,只要修改开头两行即可,如:
  ```
F
Feng Ni 已提交
329
  model_name=yolov7
F
Feng Ni 已提交
330 331
  job_name=yolov7_l_300e_coco
  ```
F
Feng Ni 已提交
332 333 334
- 导出**onnx**,首先安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX)`pip install paddle2onnx`
- **统计FLOPs(G)和Params(M)**,首先安装[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)`pip install paddleslim`,然后设置[runtime.yml](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/runtime.yml)`print_flops: True``print_params: True`,并且注意确保是**单尺度**下如640x640,**打印的是MACs,FLOPs=2*MACs**

F
Feng Ni 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

### 自定义数据集

#### 数据集准备:

1.自定义数据集的标注制作,请参考[DetAnnoTools](../tutorials/data/DetAnnoTools.md);

2.自定义数据集的训练准备,请参考[PrepareDataSet](../tutorials/PrepareDataSet.md)


#### fintune训练:

除了更改数据集的路径外,训练一般推荐加载**对应模型的COCO预训练权重**去fintune,会更快收敛和达到更高精度,如:

```base
# 单卡fintune训练:
F
Feng Ni 已提交
351
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
F
Feng Ni 已提交
352 353

# 多卡fintune训练:
F
Feng Ni 已提交
354
python -m paddle.distributed.launch --log_dir=./log_dir --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams
F
Feng Ni 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
```

**注意:**
- fintune训练一般会提示head分类分支最后一层卷积的通道数没对应上,属于正常情况,是由于自定义数据集一般和COCO数据集种类数不一致;
- fintune训练一般epoch数可以设置更少,lr设置也更小点如1/10,最高精度可能出现在中间某个epoch;

#### 预测和导出:

使用自定义数据集预测和导出模型时,如果TestDataset数据集路径设置不正确会默认使用COCO 80类。
除了TestDataset数据集路径设置正确外,也可以自行修改和添加对应的label_list.txt文件(一行记录一个对应种类),TestDataset中的anno_path也可设置为绝对路径,如:
```
TestDataset:
  !ImageFolder
    anno_path: label_list.txt # 如不使用dataset_dir,则anno_path即为相对于PaddleDetection主目录的相对路径
    # dataset_dir: dataset/my_coco # 如使用dataset_dir,则dataset_dir/anno_path作为新的anno_path
```
label_list.txt里的一行记录一个对应种类,如下所示:
```
person
vehicle
```