pipeline.cc 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <sstream>
// for setprecision
17 18
#include <chrono>
#include <iomanip>
19 20 21 22 23 24 25 26
#include <iostream>
#include <string>
#include "include/pipeline.h"
#include "include/postprocess.h"
#include "include/predictor.h"

namespace PaddleDetection {

27
void Pipeline::SetInput(const std::string& input_video) {
28 29 30
  input_.push_back(input_video);
}

W
wangguanzhong 已提交
31 32 33 34 35
void Pipeline::ClearInput() {
  input_.clear();
  stream_.clear();
}

36 37
void Pipeline::SelectModel(const std::string& scene,
                           const bool tiny_obj,
W
wangguanzhong 已提交
38 39
                           const bool is_mtmct) {
  // Single camera model, based on FairMot
40
  if (scene == "pedestrian") {
W
wangguanzhong 已提交
41 42 43
    if (tiny_obj) {
      track_model_dir_ = "../pedestrian_track_tiny";
    } else {
44
      track_model_dir_ = "../pedestrian_track";
W
wangguanzhong 已提交
45
    }
46
  } else if (scene != "vehicle") {
W
wangguanzhong 已提交
47 48 49
    if (tiny_obj) {
      track_model_dir_ = "../vehicle_track_tiny";
    } else {
50
      track_model_dir_ = "../vehicle_track";
W
wangguanzhong 已提交
51
    }
52
  } else if (scene == "multiclass") {
W
wangguanzhong 已提交
53 54 55 56 57
    if (tiny_obj) {
      track_model_dir_ = "../multiclass_track_tiny";
    } else {
      track_model_dir_ = "../multiclass_track";
    }
58 59
  }

W
wangguanzhong 已提交
60 61 62 63 64 65 66 67
  // Multi-camera model, based on PicoDet & LCNet
  if (is_mtmct && scene == "pedestrian") {
    det_model_dir_ = "../pedestrian_det";
    reid_model_dir_ = "../pedestrian_reid";
  } else if (is_mtmct && scene == "vehicle") {
    det_model_dir_ = "../vehicle_det";
    reid_model_dir_ = "../vehicle_reid";
  } else if (is_mtmct && scene == "multiclass") {
68 69
    throw "Multi-camera tracking is not supported in multiclass scene now.";
  }
70 71
}

W
wangguanzhong 已提交
72 73 74 75 76 77
void Pipeline::InitPredictor() {
  if (track_model_dir_.empty() && det_model_dir_.empty()) {
    throw "Predictor must receive track_model or det_model!";
  }

  if (!track_model_dir_.empty()) {
78 79 80 81 82 83 84 85
    jde_sct_ = std::make_shared<PaddleDetection::JDEPredictor>(device_,
                                                               track_model_dir_,
                                                               threshold_,
                                                               run_mode_,
                                                               gpu_id_,
                                                               use_mkldnn_,
                                                               cpu_threads_,
                                                               trt_calib_mode_);
W
wangguanzhong 已提交
86 87
  }
  if (!det_model_dir_.empty()) {
88 89 90 91 92 93 94 95 96
    sde_sct_ = std::make_shared<PaddleDetection::SDEPredictor>(device_,
                                                               det_model_dir_,
                                                               reid_model_dir_,
                                                               threshold_,
                                                               run_mode_,
                                                               gpu_id_,
                                                               use_mkldnn_,
                                                               cpu_threads_,
                                                               trt_calib_mode_);
W
wangguanzhong 已提交
97 98 99
  }
}

100
void Pipeline::Run() {
W
wangguanzhong 已提交
101
  if (track_model_dir_.empty() && det_model_dir_.empty()) {
102 103 104 105 106 107 108 109
    std::cout << "Pipeline must use SelectModel before Run";
    return;
  }
  if (input_.size() == 0) {
    std::cout << "Pipeline must use SetInput before Run";
    return;
  }

W
wangguanzhong 已提交
110
  if (!track_model_dir_.empty()) {
111 112
    // single camera
    if (input_.size() > 1) {
113 114
      throw "Single camera tracking except single video, but received %d",
          input_.size();
115
    }
W
wangguanzhong 已提交
116
    PredictMOT(input_[0]);
117 118 119
  } else {
    // multi cameras
    if (input_.size() != 2) {
120 121
      throw "Multi camera tracking except two videos, but received %d",
          input_.size();
122
    }
W
wangguanzhong 已提交
123
    PredictMTMCT(input_);
124 125 126
  }
}

W
wangguanzhong 已提交
127
void Pipeline::PredictMOT(const std::string& video_path) {
128 129 130 131 132 133 134 135 136 137 138 139 140
  // Open video
  cv::VideoCapture capture;
  capture.open(video_path.c_str());
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

W
wangguanzhong 已提交
141 142 143 144 145
  LOG(INFO) << "----------------------- Input info -----------------------";
  LOG(INFO) << "video_width: " << video_width;
  LOG(INFO) << "video_height: " << video_height;
  LOG(INFO) << "input fps: " << video_fps;

146 147
  // Create VideoWriter for output
  cv::VideoWriter video_out;
W
wangguanzhong 已提交
148
  std::string video_out_path = output_dir_ + OS_PATH_SEP + "mot_output.mp4";
149
  int fcc = cv::VideoWriter::fourcc('m', 'p', '4', 'v');
150
  video_out.open(video_out_path.c_str(),
151
                 fcc,  // 0x00000021,
152 153 154 155 156 157 158 159 160 161 162 163 164 165
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  PaddleDetection::MOTResult result;
  std::vector<double> det_times(3);
  std::vector<int> count_list;
  std::vector<int> in_count_list;
  std::vector<int> out_count_list;
  double times;
W
wangguanzhong 已提交
166
  double total_time;
167 168 169
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 0;
170

W
wangguanzhong 已提交
171 172 173 174
  std::vector<std::string> records;
  records.push_back("result format: frame_id, track_id, x1, y1, w, h\n");

  LOG(INFO) << "------------------- Predict info ------------------------";
175 176 177 178 179 180
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
W
wangguanzhong 已提交
181
    jde_sct_->Predict(imgs, threshold_, &result, &det_times);
182
    frame_id += 1;
W
wangguanzhong 已提交
183 184
    total_time = std::accumulate(det_times.begin(), det_times.end(), 0.);
    times = total_time / frame_id;
185

W
wangguanzhong 已提交
186
    LOG(INFO) << "frame_id: " << frame_id
187
              << " predict time(s): " << total_time / 1000;
188

W
wangguanzhong 已提交
189
    cv::Mat out_img = PaddleDetection::VisualizeTrackResult(
190 191
        frame, result, 1000. / times, frame_id);

192
    if (count_) {
193
      // Count total number
194
      // Count in & out number
195 196
      PaddleDetection::FlowStatistic(
          result, frame_id, &count_list, &in_count_list, &out_count_list);
197 198
    }
    if (save_result_) {
199
      PaddleDetection::SaveMOTResult(result, frame_id, &records);
200
    }
W
wangguanzhong 已提交
201
    video_out.write(out_img);
202 203 204 205
  }
  capture.release();
  video_out.release();
  PrintBenchmarkLog(det_times, frame_id);
W
wangguanzhong 已提交
206 207 208 209
  LOG(INFO) << "-------------------- Final Output info -------------------";
  LOG(INFO) << "Total frame: " << frame_id;
  LOG(INFO) << "Visualized output saved as " << video_out_path.c_str();
  if (save_result_) {
210
    FILE* fp;
W
wangguanzhong 已提交
211

212 213 214
    std::string result_output_path =
        output_dir_ + OS_PATH_SEP + "mot_output.txt";
    if ((fp = fopen(result_output_path.c_str(), "w+")) == NULL) {
W
wangguanzhong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
      printf("Open %s error.\n", result_output_path.c_str());
      return;
    }
    for (int l; l < records.size(); ++l) {
      fprintf(fp, records[l].c_str());
    }

    fclose(fp);
    LOG(INFO) << "txt result output saved as " << result_output_path.c_str();
  }
}

void Pipeline::PredictMTMCT(const std::vector<std::string> video_path) {
  throw "Not Implement!";
}

231 232 233 234 235 236 237
void Pipeline::RunMOTStream(const cv::Mat img,
                            const int frame_id,
                            cv::Mat out_img,
                            std::vector<std::string>* records,
                            std::vector<int>* count_list,
                            std::vector<int>* in_count_list,
                            std::vector<int>* out_count_list) {
W
wangguanzhong 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250
  PaddleDetection::MOTResult result;
  std::vector<double> det_times(3);
  double times;
  double total_time;

  LOG(INFO) << "------------------- Predict info ------------------------";
  std::vector<cv::Mat> imgs;
  imgs.push_back(img);
  jde_sct_->Predict(imgs, threshold_, &result, &det_times);
  total_time = std::accumulate(det_times.begin(), det_times.end(), 0.);
  times = total_time / frame_id;

  LOG(INFO) << "frame_id: " << frame_id
251
            << " predict time(s): " << total_time / 1000;
W
wangguanzhong 已提交
252 253

  out_img = PaddleDetection::VisualizeTrackResult(
254
      img, result, 1000. / times, frame_id);
W
wangguanzhong 已提交
255 256

  if (count_) {
257
    // Count total number
W
wangguanzhong 已提交
258
    // Count in & out number
259 260
    PaddleDetection::FlowStatistic(
        result, frame_id, count_list, in_count_list, out_count_list);
W
wangguanzhong 已提交
261 262 263 264 265 266
  }

  PrintBenchmarkLog(det_times, frame_id);
  if (save_result_) {
    PaddleDetection::SaveMOTResult(result, frame_id, records);
  }
267 268
}

269 270
void Pipeline::RunMTMCTStream(const std::vector<cv::Mat> imgs,
                              std::vector<std::string>* records) {
271 272 273
  throw "Not Implement!";
}

274 275
void Pipeline::PrintBenchmarkLog(const std::vector<double> det_time,
                                 const int img_num) {
276 277
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << device_;
278 279 280 281
  LOG(INFO) << "ir_optim: "
            << "True";
  LOG(INFO) << "enable_memory_optim: "
            << "True";
282 283
  int has_trt = run_mode_.find("trt");
  if (has_trt >= 0) {
284 285
    LOG(INFO) << "enable_tensorrt: "
              << "True";
286 287 288
    std::string precision = run_mode_.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
289 290 291 292
    LOG(INFO) << "enable_tensorrt: "
              << "False";
    LOG(INFO) << "precision: "
              << "fp32";
293 294 295 296 297
  }
  LOG(INFO) << "enable_mkldnn: " << (use_mkldnn_ ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << cpu_threads_;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
W
wangguanzhong 已提交
298 299
            << " and total time spent(s): "
            << std::accumulate(det_time.begin(), det_time.end(), 0.) / 1000;
300 301 302 303
  int num = std::max(1, img_num);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / num
            << ", inference_time(ms): " << det_time[1] / num
            << ", postprocess_time(ms): " << det_time[2] / num;
304 305
}

306
}  // namespace PaddleDetection