mot_utils.py 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
F
Feng Ni 已提交
17
import sys
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
import ast
import argparse


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."),
        required=True)
    parser.add_argument(
        "--image_file", type=str, default=None, help="Path of image file.")
    parser.add_argument(
        "--image_dir",
        type=str,
        default=None,
        help="Dir of image file, `image_file` has a higher priority.")
    parser.add_argument(
        "--batch_size", type=int, default=1, help="batch_size for inference.")
    parser.add_argument(
        "--video_file",
        type=str,
        default=None,
        help="Path of video file, `video_file` or `camera_id` has a highest priority."
    )
    parser.add_argument(
        "--camera_id",
        type=int,
        default=-1,
        help="device id of camera to predict.")
    parser.add_argument(
        "--threshold", type=float, default=0.5, help="Threshold of score.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory of output visualization files.")
    parser.add_argument(
        "--run_mode",
        type=str,
61 62
        default='paddle',
        help="mode of running(paddle/trt_fp32/trt_fp16/trt_int8)")
63 64 65 66 67 68
    parser.add_argument(
        "--device",
        type=str,
        default='cpu',
        help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU."
    )
69 70 71 72 73
    parser.add_argument(
        "--use_gpu",
        type=ast.literal_eval,
        default=False,
        help="Deprecated, please use `--device`.")
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    parser.add_argument(
        "--run_benchmark",
        type=ast.literal_eval,
        default=False,
        help="Whether to predict a image_file repeatedly for benchmark")
    parser.add_argument(
        "--enable_mkldnn",
        type=ast.literal_eval,
        default=False,
        help="Whether use mkldnn with CPU.")
    parser.add_argument(
        "--cpu_threads", type=int, default=1, help="Num of threads with CPU.")
    parser.add_argument(
        "--trt_min_shape", type=int, default=1, help="min_shape for TensorRT.")
    parser.add_argument(
        "--trt_max_shape",
        type=int,
        default=1280,
        help="max_shape for TensorRT.")
    parser.add_argument(
        "--trt_opt_shape",
        type=int,
        default=640,
        help="opt_shape for TensorRT.")
    parser.add_argument(
        "--trt_calib_mode",
        type=bool,
        default=False,
        help="If the model is produced by TRT offline quantitative "
        "calibration, trt_calib_mode need to set True.")
    parser.add_argument(
        '--save_images',
        action='store_true',
        help='Save visualization image results.')
    parser.add_argument(
        '--save_mot_txts',
        action='store_true',
        help='Save tracking results (txt).')
112 113 114 115
    parser.add_argument(
        '--save_mot_txt_per_img',
        action='store_true',
        help='Save tracking results (txt) for each image.')
116 117 118 119 120 121
    parser.add_argument(
        '--scaled',
        type=bool,
        default=False,
        help="Whether coords after detector outputs are scaled, False in JDE YOLOv3 "
        "True in general detector.")
122 123
    parser.add_argument(
        "--tracker_config", type=str, default=None, help=("tracker donfig"))
124 125 126 127 128 129 130 131 132 133 134
    parser.add_argument(
        "--reid_model_dir",
        type=str,
        default=None,
        help=("Directory include:'model.pdiparams', 'model.pdmodel', "
              "'infer_cfg.yml', created by tools/export_model.py."))
    parser.add_argument(
        "--reid_batch_size",
        type=int,
        default=50,
        help="max batch_size for reid model inference.")
135
    parser.add_argument(
136 137 138 139
        '--use_dark',
        type=ast.literal_eval,
        default=True,
        help='whether to use darkpose to get better keypoint position predict ')
140 141 142 143
    parser.add_argument(
        "--do_entrance_counting",
        action='store_true',
        help="Whether counting the numbers of identifiers entering "
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        "or getting out from the entrance. Note that only support single-class MOT."
    )
    parser.add_argument(
        "--do_break_in_counting",
        action='store_true',
        help="Whether counting the numbers of identifiers break in "
        "the area. Note that only support single-class MOT and "
        "the video should be taken by a static camera.")
    parser.add_argument(
        "--region_type",
        type=str,
        default='horizontal',
        help="Area type for entrance counting or break in counting, 'horizontal' and "
        "'vertical' used when do entrance counting. 'custom' used when do break in counting. "
        "Note that only support single-class MOT, and the video should be taken by a static camera."
    )
    parser.add_argument(
        '--region_polygon',
        nargs='+',
        type=int,
        default=[],
        help="Clockwise point coords (x0,y0,x1,y1...) of polygon of area when "
        "do_break_in_counting. Note that only support single-class MOT and "
        "the video should be taken by a static camera.")
168 169 170 171 172 173 174 175 176
    parser.add_argument(
        "--secs_interval",
        type=int,
        default=2,
        help="The seconds interval to count after tracking")
    parser.add_argument(
        "--draw_center_traj",
        action='store_true',
        help="Whether drawing the trajectory of center")
F
Feng Ni 已提交
177 178 179 180 181 182 183
    parser.add_argument(
        "--mtmct_dir",
        type=str,
        default=None,
        help="The MTMCT scene video folder.")
    parser.add_argument(
        "--mtmct_cfg", type=str, default=None, help="The MTMCT config.")
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    return parser


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class Timer(Times):
215
    def __init__(self, with_tracker=False):
216
        super(Timer, self).__init__()
217
        self.with_tracker = with_tracker
218 219 220
        self.preprocess_time_s = Times()
        self.inference_time_s = Times()
        self.postprocess_time_s = Times()
221
        self.tracking_time_s = Times()
222 223 224
        self.img_num = 0

    def info(self, average=False):
225 226 227 228 229 230 231 232
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            total_time = total_time + track_time
233 234 235 236
        total_time = round(total_time, 4)
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))
237 238 239 240 241 242 243 244
        preprocess_time = round(pre_time / max(1, self.img_num),
                                4) if average else pre_time
        postprocess_time = round(post_time / max(1, self.img_num),
                                 4) if average else post_time
        inference_time = round(infer_time / max(1, self.img_num),
                               4) if average else infer_time
        tracking_time = round(track_time / max(1, self.img_num),
                              4) if average else track_time
245 246 247 248 249 250 251

        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, qps))
252 253 254 255 256 257 258 259 260 261
        if self.with_tracker:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}, tracking_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000, tracking_time * 1000))
        else:
            print(
                "preprocess_time(ms): {:.2f}, inference_time(ms): {:.2f}, postprocess_time(ms): {:.2f}".
                format(preprocess_time * 1000, inference_time * 1000,
                       postprocess_time * 1000))
262 263 264

    def report(self, average=False):
        dic = {}
265 266 267 268 269 270 271 272 273 274 275
        pre_time = self.preprocess_time_s.value()
        infer_time = self.inference_time_s.value()
        post_time = self.postprocess_time_s.value()
        track_time = self.tracking_time_s.value()

        dic['preprocess_time_s'] = round(pre_time / max(1, self.img_num),
                                         4) if average else pre_time
        dic['inference_time_s'] = round(infer_time / max(1, self.img_num),
                                        4) if average else infer_time
        dic['postprocess_time_s'] = round(post_time / max(1, self.img_num),
                                          4) if average else post_time
276
        dic['img_num'] = self.img_num
277 278 279
        total_time = pre_time + infer_time + post_time
        if self.with_tracker:
            dic['tracking_time_s'] = round(track_time / max(1, self.img_num),
W
wangguanzhong 已提交
280
                                           4) if average else track_time
281
            total_time = total_time + track_time
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        dic['total_time_s'] = round(total_time, 4)
        return dic


def get_current_memory_mb():
    """
    It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
    And this function Current program is time-consuming.
    """
    import pynvml
    import psutil
    import GPUtil
    gpu_id = int(os.environ.get('CUDA_VISIBLE_DEVICES', 0))

    pid = os.getpid()
    p = psutil.Process(pid)
    info = p.memory_full_info()
    cpu_mem = info.uss / 1024. / 1024.
    gpu_mem = 0
    gpu_percent = 0
    gpus = GPUtil.getGPUs()
    if gpu_id is not None and len(gpus) > 0:
        gpu_percent = gpus[gpu_id].load
        pynvml.nvmlInit()
        handle = pynvml.nvmlDeviceGetHandleByIndex(0)
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        gpu_mem = meminfo.used / 1024. / 1024.
    return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
F
Feng Ni 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344


def video2frames(video_path, outpath, frame_rate=25, **kargs):
    def _dict2str(kargs):
        cmd_str = ''
        for k, v in kargs.items():
            cmd_str += (' ' + str(k) + ' ' + str(v))
        return cmd_str

    ffmpeg = ['ffmpeg ', ' -y -loglevel ', ' error ']
    vid_name = os.path.basename(video_path).split('.')[0]
    out_full_path = os.path.join(outpath, vid_name)

    if not os.path.exists(out_full_path):
        os.makedirs(out_full_path)

    # video file name
    outformat = os.path.join(out_full_path, '%05d.jpg')

    cmd = ffmpeg
    cmd = ffmpeg + [
        ' -i ', video_path, ' -r ', str(frame_rate), ' -f image2 ', outformat
    ]
    cmd = ''.join(cmd) + _dict2str(kargs)

    if os.system(cmd) != 0:
        raise RuntimeError('ffmpeg process video: {} error'.format(video_path))
        sys.exit(-1)

    sys.stdout.flush()
    return out_full_path


def _is_valid_video(f, extensions=('.mp4', '.avi', '.mov', '.rmvb', '.flv')):
    return f.lower().endswith(extensions)