mot_jde_infer.py 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
24
from preprocess import decode_image
W
wangguanzhong 已提交
25
from mot_utils import argsparser, Timer, get_current_memory_mb
26 27 28 29 30 31
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
32

33
from mot import JDETracker
34
from mot.utils import MOTTimer, write_mot_results, flow_statistic
W
wangguanzhong 已提交
35
from mot.visualize import plot_tracking, plot_tracking_dict
36 37

# Global dictionary
38
MOT_JDE_SUPPORT_MODELS = {
39 40 41 42 43 44 45 46 47 48
    'JDE',
    'FairMOT',
}


class JDE_Detector(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
50
        batch_size (int): size of pre batch in inference
51 52 53 54 55 56
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
57 58 59 60 61 62 63 64 65 66
        enable_mkldnn (bool): whether to open MKLDNN
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
            or getting out from the entrance, default as False,only support single class
            counting in MOT.
67 68 69 70 71 72 73 74 75
        do_break_in_counting(bool): Whether counting the numbers of identifiers break in
            the area, default as False,only support single class counting in MOT,
            and the video should be taken by a static camera.
        region_type (str): Area type for entrance counting or break in counting, 'horizontal'
            and 'vertical' used when do entrance counting. 'custom' used when do break in counting. 
            Note that only support single-class MOT, and the video should be taken by a static camera.
        region_polygon (list): Clockwise point coords (x0,y0,x1,y1...) of polygon of area when
            do_break_in_counting. Note that only support single-class MOT and
            the video should be taken by a static camera.
76 77
    """

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    def __init__(self,
                 model_dir,
                 tracker_config=None,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 output_dir='output',
                 threshold=0.5,
                 save_images=False,
                 save_mot_txts=False,
                 draw_center_traj=False,
                 secs_interval=10,
                 do_entrance_counting=False,
                 do_break_in_counting=False,
                 region_type='horizontal',
                 region_polygon=[]):
100 101 102 103 104 105 106 107 108 109
        super(JDE_Detector, self).__init__(
            model_dir=model_dir,
            device=device,
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
110 111 112
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
113 114 115 116 117
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
118 119 120 121 122 123 124
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
125

126 127 128 129 130 131 132
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
        cfg = self.pred_config.tracker
133 134
        min_box_area = cfg.get('min_box_area', 0.0)
        vertical_ratio = cfg.get('vertical_ratio', 0.0)
135 136 137
        conf_thres = cfg.get('conf_thres', 0.0)
        tracked_thresh = cfg.get('tracked_thresh', 0.7)
        metric_type = cfg.get('metric_type', 'euclidean')
138 139 140 141 142 143 144 145 146

        self.tracker = JDETracker(
            num_classes=self.num_classes,
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)

147 148 149 150 151 152 153 154 155 156
    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes = result['pred_dets']
        if np_boxes.shape[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def tracking(self, det_results):
157
        pred_dets = det_results['pred_dets']  # cls_id, score, x0, y0, x1, y1
158
        pred_embs = det_results['pred_embs']
159 160 161 162 163 164 165 166 167 168 169
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
170
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
171 172 173 174 175 176 177 178
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
        return online_tlwhs, online_scores, online_ids

179
    def predict(self, repeats=1):
180 181
        '''
        Args:
182
            repeats (int): repeats number for prediction
183
        Returns:
184
            result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
185
                            matix element:[class, score, x_min, y_min, x_max, y_max]
186 187
                            FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
                            shape: [N, 128]
188
        '''
W
wangguanzhong 已提交
189
        # model prediction
190
        np_pred_dets, np_pred_embs = None, None
191 192 193 194
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
195
            np_pred_dets = boxes_tensor.copy_to_cpu()
196
            embs_tensor = self.predictor.get_output_handle(output_names[1])
197 198 199 200 201 202 203 204 205
            np_pred_embs = embs_tensor.copy_to_cpu()

        result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
206 207
                      visual=True,
                      seq_name=None):
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
268
                if len(image_list) > 1 and frame_id % 10 == 0:
269 270 271 272 273 274 275 276 277 278 279
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=ids2names)
280 281
                if seq_name is None:
                    seq_name = image_list[0].split('/')[-2]
282 283 284 285 286 287 288 289 290 291 292 293 294
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'mot_output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
295
        else:
296 297 298 299 300 301 302 303 304 305 306 307
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
308 309
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
310 311 312 313 314 315 316 317
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels
318 319 320 321 322 323 324 325 326 327 328 329 330

        center_traj = None
        entrance = None
        records = None
        if self.draw_center_traj:
            center_traj = [{} for i in range(num_classes)]
        if num_classes == 1:
            id_set = set()
            interval_id_set = set()
            in_id_list = list()
            out_id_list = list()
            prev_center = dict()
            records = list()
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
            if self.do_entrance_counting or self.do_break_in_counting:
                if self.region_type == 'horizontal':
                    entrance = [0, height / 2., width, height / 2.]
                elif self.region_type == 'vertical':
                    entrance = [width / 2, 0., width / 2, height]
                elif self.region_type == 'custom':
                    entrance = []
                    assert len(
                        self.region_polygon
                    ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                    for i in range(0, len(self.region_polygon), 2):
                        entrance.append([
                            self.region_polygon[i], self.region_polygon[i + 1]
                        ])
                    entrance.append([width, height])
                else:
                    raise ValueError("region_type:{} is not supported.".format(
                        self.region_type))
349 350 351

        video_fps = fps

352 353 354 355 356 357 358 359 360
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
361 362 363
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image(
                [frame], visual=False, seq_name=seq_name)
364 365 366 367 368 369 370 371
            timer.toc()

            online_tlwhs, online_scores, online_ids = mot_results[0]
            for cls_id in range(num_classes):
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))

372 373 374 375 376 377
            # NOTE: just implement flow statistic for single class
            if num_classes == 1:
                result = (frame_id + 1, online_tlwhs[0], online_scores[0],
                          online_ids[0])
                statistic = flow_statistic(
                    result, self.secs_interval, self.do_entrance_counting,
378 379 380
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records, data_type, num_classes)
381 382
                records = statistic['records']

383 384
            fps = 1. / timer.duration
            im = plot_tracking_dict(
385 386 387 388 389 390
                frame,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
391
                fps=fps,
392 393 394 395 396
                ids2names=ids2names,
                do_entrance_counting=self.do_entrance_counting,
                entrance=entrance,
                records=records,
                center_traj=center_traj)
397

398 399 400 401 402
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')

            write_mot_results(result_filename, results, data_type, num_classes)

            if num_classes == 1:
                result_filename = os.path.join(
                    self.output_dir,
                    video_out_name.split('.')[-2] + '_flow_statistic.txt')
                f = open(result_filename, 'w')
                for line in records:
                    f.write(line)
                print('Flow statistic save in {}'.format(result_filename))
                f.close()

420 421 422 423 424 425
        writer.release()


def main():
    detector = JDE_Detector(
        FLAGS.model_dir,
426
        tracker_config=None,
427 428
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
429
        batch_size=1,
430 431 432 433 434
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
435 436 437 438 439 440 441
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts,
        draw_center_traj=FLAGS.draw_center_traj,
        secs_interval=FLAGS.secs_interval,
442 443 444 445
        do_entrance_counting=FLAGS.do_entrance_counting,
        do_break_in_counting=FLAGS.do_break_in_counting,
        region_type=FLAGS.region_type,
        region_polygon=FLAGS.region_polygon)
446 447 448

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
449
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
450 451 452
    else:
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
453 454
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)

455 456 457 458
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
459
            model_dir = FLAGS.model_dir
460 461 462 463
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
464
            bench_log(detector, img_list, model_info, name='MOT')
465 466 467 468 469 470 471 472 473 474 475 476


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()