yolov3.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

21 22 23
from paddle import fluid

from ppdet.experimental import mixed_precision_global_state
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from ppdet.core.workspace import register

__all__ = ['YOLOv3']


@register
class YOLOv3(object):
    """
    YOLOv3 network, see https://arxiv.org/abs/1804.02767

    Args:
        backbone (object): an backbone instance
        yolo_head (object): an `YOLOv3Head` instance
    """

    __category__ = 'architecture'
    __inject__ = ['backbone', 'yolo_head']
K
Kaipeng Deng 已提交
41
    __shared__ = ['use_fine_grained_loss']
42

K
Kaipeng Deng 已提交
43 44 45 46
    def __init__(self,
                 backbone,
                 yolo_head='YOLOv3Head',
                 use_fine_grained_loss=False):
47 48 49
        super(YOLOv3, self).__init__()
        self.backbone = backbone
        self.yolo_head = yolo_head
K
Kaipeng Deng 已提交
50
        self.use_fine_grained_loss = use_fine_grained_loss
51 52 53

    def build(self, feed_vars, mode='train'):
        im = feed_vars['image']
54 55 56 57 58 59 60

        mixed_precision_enabled = mixed_precision_global_state() is not None

        # cast inputs to FP16
        if mixed_precision_enabled:
            im = fluid.layers.cast(im, 'float16')

61 62 63 64 65 66
        body_feats = self.backbone(im)

        if isinstance(body_feats, OrderedDict):
            body_feat_names = list(body_feats.keys())
            body_feats = [body_feats[name] for name in body_feat_names]

67 68 69 70
        # cast features back to FP32
        if mixed_precision_enabled:
            body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats]

71
        if mode == 'train':
72 73
            gt_bbox = feed_vars['gt_bbox']
            gt_class = feed_vars['gt_class']
74 75
            gt_score = feed_vars['gt_score']

K
Kaipeng Deng 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88
            # Get targets for splited yolo loss calculation
            # YOLOv3 supports up to 3 output layers currently
            targets = []
            for i in range(3):
                k = 'target{}'.format(i)
                if k in feed_vars:
                    targets.append(feed_vars[k])

            loss = self.yolo_head.get_loss(body_feats, gt_bbox, gt_class,
                                           gt_score, targets)
            total_loss = fluid.layers.sum(list(loss.values()))
            loss.update({'loss': total_loss})
            return loss
89
        else:
90 91
            im_size = feed_vars['im_size']
            return self.yolo_head.get_prediction(body_feats, im_size)
92

93 94 95 96 97 98
    def _inputs_def(self, image_shape, num_max_boxes):
        im_shape = [None] + image_shape
        # yapf: disable
        inputs_def = {
            'image':    {'shape': im_shape,                 'dtype': 'float32', 'lod_level': 0},
            'im_size':  {'shape': [None, 2],                'dtype': 'int32',   'lod_level': 0},
Q
qingqing01 已提交
99
            'im_id':    {'shape': [None, 1],                'dtype': 'int64',   'lod_level': 0},
100 101 102 103 104 105
            'gt_bbox':  {'shape': [None, num_max_boxes, 4], 'dtype': 'float32', 'lod_level': 0},
            'gt_class': {'shape': [None, num_max_boxes],    'dtype': 'int32',   'lod_level': 0},
            'gt_score': {'shape': [None, num_max_boxes],    'dtype': 'float32', 'lod_level': 0},
            'is_difficult': {'shape': [None, num_max_boxes],'dtype': 'int32',   'lod_level': 0},
        }
        # yapf: enable
K
Kaipeng Deng 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

        if self.use_fine_grained_loss:
            # yapf: disable
            targets_def = {
                'target0':  {'shape': [None, 3, 86, 19, 19],  'dtype': 'float32',   'lod_level': 0},
                'target1':  {'shape': [None, 3, 86, 38, 38],  'dtype': 'float32',   'lod_level': 0},
                'target2':  {'shape': [None, 3, 86, 76, 76],  'dtype': 'float32',   'lod_level': 0},
            }
            # yapf: enable

            downsample = 32
            for k, mask in zip(targets_def.keys(), self.yolo_head.anchor_masks):
                targets_def[k]['shape'][1] = len(mask)
                targets_def[k]['shape'][2] = 6 + self.yolo_head.num_classes
                targets_def[k]['shape'][3] = image_shape[
                    -2] // downsample if image_shape[-2] else None
                targets_def[k]['shape'][4] = image_shape[
                    -1] // downsample if image_shape[-1] else None
K
Kaipeng Deng 已提交
124
                downsample //= 2
K
Kaipeng Deng 已提交
125 126 127

            inputs_def.update(targets_def)

128 129 130 131 132 133 134 135 136 137
        return inputs_def

    def build_inputs(
            self,
            image_shape=[3, None, None],
            fields=['image', 'gt_bbox', 'gt_class', 'gt_score'],  # for train
            num_max_boxes=50,
            use_dataloader=True,
            iterable=False):
        inputs_def = self._inputs_def(image_shape, num_max_boxes)
138 139 140 141
        # if fields has im_size, this is in eval/infer mode, fine grained loss
        # will be disabled for YOLOv3 architecture do not calculate loss in
        # eval/infer mode.
        if 'im_size' not in fields and self.use_fine_grained_loss:
K
Kaipeng Deng 已提交
142
            fields.extend(['target0', 'target1', 'target2'])
143 144 145 146 147 148 149
        feed_vars = OrderedDict([(key, fluid.data(
            name=key,
            shape=inputs_def[key]['shape'],
            dtype=inputs_def[key]['dtype'],
            lod_level=inputs_def[key]['lod_level'])) for key in fields])
        loader = fluid.io.DataLoader.from_generator(
            feed_list=list(feed_vars.values()),
W
wangguanzhong 已提交
150
            capacity=16,
151 152 153 154
            use_double_buffer=True,
            iterable=iterable) if use_dataloader else None
        return feed_vars, loader

155 156 157 158 159 160 161 162
    def train(self, feed_vars):
        return self.build(feed_vars, mode='train')

    def eval(self, feed_vars):
        return self.build(feed_vars, mode='test')

    def test(self, feed_vars):
        return self.build(feed_vars, mode='test')