yolov3_mobilenet_v1_voc.yml 1.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
architecture: YOLOv3
train_feed: YoloTrainFeed
eval_feed: YoloEvalFeed
test_feed: YoloTestFeed
use_gpu: true
max_iters: 70000
log_smooth_window: 20
save_dir: output
snapshot_iter: 2000
metric: VOC
11
map_type: 11point
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
weights: output/yolov3_mobilenet_v1_voc/model_final
num_classes: 20

YOLOv3:
  backbone: MobileNet
  yolo_head: YOLOv3Head

MobileNet:
  norm_type: sync_bn
  norm_decay: 0.
  conv_group_scale: 1
  with_extra_blocks: false

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  ignore_thresh: 0.7
  label_smooth: false
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 55000
    - 62000
  - !LinearWarmup
    start_factor: 0.
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

YoloTrainFeed:
  batch_size: 8
  dataset:
    dataset_dir: dataset/voc
K
Kaipeng Deng 已提交
66
    annotation: trainval.txt
67 68 69 70 71 72 73 74
    use_default_label: true
  num_workers: 8
  bufsize: 128
  use_process: true
  mixup_epoch: 250

YoloEvalFeed:
  batch_size: 8
75
  image_shape: [3, 608, 608]
76 77
  dataset:
    dataset_dir: dataset/voc
K
Kaipeng Deng 已提交
78
    annotation: test.txt
79 80 81 82
    use_default_label: true

YoloTestFeed:
  batch_size: 1
83
  image_shape: [3, 608, 608]
84 85
  dataset:
    use_default_label: true