op_registry.h 18.3 KB
Newer Older
1 2
#pragma once

3
#include <algorithm>
4
#include <atomic>
Y
Yu Yang 已提交
5
#include <type_traits>
6 7
#include <unordered_map>
#include <unordered_set>
Q
Qiao Longfei 已提交
8
#include "paddle/framework/attr_checker.h"
9 10
#include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h"
Q
Qiao Longfei 已提交
11
#include "paddle/framework/operator.h"
D
dongzhihong 已提交
12
#include "paddle/framework/scope.h"
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);

  static Attribute GetAttrValue(const AttrDesc& attr_desc) {
    switch (attr_desc.type()) {
      case paddle::framework::AttrType::INT: {
        return attr_desc.i();
      }
      case paddle::framework::AttrType::FLOAT: {
        return attr_desc.f();
      }
      case paddle::framework::AttrType::STRING: {
        return attr_desc.s();
      }
      case paddle::framework::AttrType::INTS: {
        std::vector<int> val(attr_desc.ints_size());
        for (int i = 0; i < attr_desc.ints_size(); ++i) {
          val[i] = attr_desc.ints(i);
        }
        return val;
      }
      case paddle::framework::AttrType::FLOATS: {
        std::vector<float> val(attr_desc.floats_size());
        for (int i = 0; i < attr_desc.floats_size(); ++i) {
          val[i] = attr_desc.floats(i);
        }
        return val;
      }
      case paddle::framework::AttrType::STRINGS: {
        std::vector<std::string> val(attr_desc.strings_size());
        for (int i = 0; i < attr_desc.strings_size(); ++i) {
          val[i] = attr_desc.strings(i);
        }
        return val;
      }
    }
    PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
    return boost::blank();
  }
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

66 67 68 69 70 71 72 73
  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate() {
    validated_ = true;
    CheckNoDuplicatedInOutAttrs();
  }
74

75
 protected:
76 77
  void AddInput(const std::string& name, const std::string& comment,
                bool multiple = false) {
78
    auto input = proto_->mutable_inputs()->Add();
79 80
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
81 82 83 84 85 86 87 88
    input->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleInput();
    }
  }

  void AddInputs(const std::string& name, const std::string& comment) {
    AddInput(name, comment, true);
89 90
  }

91 92
  void AddOutput(const std::string& name, const std::string& comment,
                 bool temporary = false, bool multiple = false) {
93
    auto output = proto_->mutable_outputs()->Add();
94 95
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
96 97 98 99 100 101 102 103 104 105 106 107 108
    output->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleOutput();
    }
    output->set_temporary(temporary);
    if (temporary) {
      SetHasTemporaryOutput();
    }
  }

  void AddOutputs(const std::string& name, const std::string& comment,
                  bool temporary = false) {
    AddOutput(name, comment, temporary, true);
109 110 111 112
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
113 114
                               const std::string& comment,
                               bool generated = false) {
115
    auto attr = proto_->mutable_attrs()->Add();
116 117
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
118
    attr->set_generated(generated);
119 120 121 122 123 124 125 126
    AttrTypeHelper::SetAttrType<T>(attr);
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

175
  void CheckNoDuplicatedInOutAttrs() {
176
    std::unordered_set<std::string> names;
177 178 179 180
    auto checker = [&](const std::string& name) {
      PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
      names.insert(name);
    };
181
    for (auto& attr : proto_->attrs()) {
182 183 184 185 186 187 188
      checker(attr.name());
    }
    for (auto& input : proto_->inputs()) {
      checker(input.name());
    }
    for (auto& output : proto_->outputs()) {
      checker(output.name());
189 190 191
    }
  }

192 193
  OpProto* proto_;
  OpAttrChecker* op_checker_;
194
  bool validated_{false};
195 196 197
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
198 199 200
};

class OpRegistry {
Q
Qiao Longfei 已提交
201
  using OpCreator = std::function<OperatorBase*()>;
Y
Yu Yang 已提交
202
  using VarIndexMap = std::unordered_map<std::string, int>;
Y
Yu Yang 已提交
203
  using VarNameList = std::vector<std::string>;
204 205 206 207

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
208 209
    creators()[op_type] = [] { return new OpType; };
    OpAttrChecker& op_checker = op_checkers()[op_type];
D
dongzhihong 已提交
210
    OpProto& op_proto = protos()[op_type];
211 212
    auto maker = ProtoMakerType(&op_proto, &op_checker);
    maker.Validate();
Y
Yu Yang 已提交
213 214 215 216 217
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
Y
Yu Yang 已提交
218 219 220 221 222 223 224 225 226 227 228

    VarIndexMaps()[op_type].reset(new VarIndexMap());
    auto& varmap = *VarIndexMaps()[op_type];
    int idx = 0;
    for (auto& var : op_proto.inputs()) {
      varmap[var.name()] = idx++;
    }
    idx = 0;
    for (auto& var : op_proto.outputs()) {
      varmap[var.name()] = idx++;
    }
229 230
  }

F
fengjiayi 已提交
231 232 233 234 235
  template <typename OpType>
  static void RegisterGradOp(const std::string& op_type) {
    grad_creators()[op_type] = [] { return new OpType; };
  }

Y
Yu Yang 已提交
236 237 238 239 240 241
  static OperatorPtr CreateOp(const std::string& type,
                              const VarNameList& inputs,
                              const VarNameList& outputs,
                              const AttributeMap& attrs) {
    auto op_create_it = creators().find(type);
    PADDLE_ENFORCE(op_create_it != creators().end(),
F
fengjiayi 已提交
242
                   "Operator %s cannot be found.", type);
243

Y
Yu Yang 已提交
244 245 246 247
    auto op = op_create_it->second();
    op->type_ = type;
    op->inputs_ = inputs;
    op->outputs_ = outputs;
F
fengjiayi 已提交
248

Y
Yu Yang 已提交
249 250
    op->attrs_ = attrs;
    op_checkers().at(type).Check(op->attrs_);
251

Y
Yu Yang 已提交
252
    GenerateTempVariableName(op);
253

Y
Yu Yang 已提交
254
    {
Y
Yu Yang 已提交
255
      auto var_index_it = VarIndexMaps().find(type);
Y
Yu Yang 已提交
256 257 258 259
      if (var_index_it != VarIndexMaps().end()) {
        op->in_out_idxs_ = var_index_it->second;
      }
    }
Y
Yu Yang 已提交
260

Q
Qiao Longfei 已提交
261
    op->Init();
Y
Yu Yang 已提交
262
    return OperatorPtr(op);
263 264
  }

Q
Qiao Longfei 已提交
265
  static OperatorPtr CreateOp(const OpDesc& op_desc) {
Y
Yu Yang 已提交
266 267
    std::vector<std::string> inputs;
    inputs.reserve((size_t)op_desc.inputs_size());
268
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
Y
Yu Yang 已提交
269 270 271 272
              std::back_inserter(inputs));

    std::vector<std::string> outputs;
    outputs.reserve((size_t)op_desc.outputs_size());
273
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
Y
Yu Yang 已提交
274 275 276
              std::back_inserter(outputs));

    AttributeMap attrs;
277
    for (auto& attr : op_desc.attrs()) {
Y
Yu Yang 已提交
278
      attrs[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
279
    }
Y
Yu Yang 已提交
280 281

    return CreateOp(op_desc.type(), inputs, outputs, attrs);
282 283
  }

F
fengjiayi 已提交
284 285 286 287 288 289 290 291 292 293
  static OperatorPtr CreateGradOp(OperatorPtr op) {
    OperatorPtr grad_op(grad_creators().at(op->type_)());
    grad_op->type_ = op->type_;

    AssembleGradInOut(op, grad_op);
    GenerateGradArgOffset(op, grad_op);
    GenerateGradAttr(op, grad_op);

    grad_op->Init();
    return grad_op;
D
dongzhihong 已提交
294 295
  }

Y
Yu Yang 已提交
296 297 298 299 300
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

301
 private:
Y
Yu Yang 已提交
302 303 304 305 306 307
  static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
  VarIndexMaps() {
    static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
    return maps_;
  }

F
fengjiayi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
  static std::unordered_map<std::string, OpCreator>& creators() {
    static std::unordered_map<std::string, OpCreator> creators_;
    return creators_;
  }

  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };

  static std::unordered_map<std::string, OpCreator>& grad_creators() {
    static std::unordered_map<std::string, OpCreator> grad_creators_;
    return grad_creators_;
  }

323
  static void GenerateTempVariableName(OperatorBase* op) {
324 325 326
    static std::atomic<size_t> gUniqId(0UL);
    for (auto& outname : op->outputs_) {
      if (outname == OperatorBase::TMP_VAR_NAME()) {
327
        outname += op->type_;
328 329 330 331 332 333
        outname += "@";
        outname += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }

F
fengjiayi 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  static void AssembleGradInOut(OperatorPtr op, OperatorPtr grad_op) {
    size_t in_sz = op->inputs_.size() + op->outputs_.size() * 2;
    grad_op->inputs_.reserve(in_sz);
    size_t out_sz = op->inputs_.size();
    grad_op->outputs_.reserve(out_sz);
    // copy op->inputs_ to grad_op->inputs_
    std::copy(op->inputs_.begin(), op->inputs_.end(),
              std::back_inserter(grad_op->inputs_));
    // copy op->outputs_ to grad_op->inputs_
    std::copy(op->outputs_.begin(), op->outputs_.end(),
              std::back_inserter(grad_op->inputs_));
    // add gradients of op->outputs_ to grad_op->inputs_
    for (const std::string& name : op->outputs_) {
      grad_op->inputs_.emplace_back(name + OperatorBase::GRAD_VAR_SUFFIX());
    }
    // add gradients of op->inputs_ to grad_op->outputs_
    for (const std::string& name : op->inputs_) {
      grad_op->outputs_.emplace_back(name + OperatorBase::GRAD_VAR_SUFFIX());
    }
353
  }
354

F
fengjiayi 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  static void GenerateGradArgOffset(OperatorPtr op, OperatorPtr grad_op) {
    VarIndexMap* grad_varmap = new VarIndexMap();
    const OpProto& op_proto = protos()[op->type_];
    int idx = 0;
    // offset of op's inputs
    for (const auto& var : op_proto.inputs()) {
      (*grad_varmap)[var.name()] = idx++;
    }
    // offset of op's outputs
    for (const auto& var : op_proto.outputs()) {
      (*grad_varmap)[var.name()] = idx++;
    }
    // offset of gradients of op's output
    for (const auto& var : op_proto.outputs()) {
      (*grad_varmap)[var.name() + OperatorBase::GRAD_VAR_SUFFIX()] = idx++;
    }
    idx = 0;
    // offset of gradients of op's input
    for (const auto& var : op_proto.inputs()) {
      (*grad_varmap)[var.name() + OperatorBase::GRAD_VAR_SUFFIX()] = idx++;
    }
    grad_op->in_out_idxs_.reset(grad_varmap);
  }
D
dongzhihong 已提交
378

F
fengjiayi 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
  static void GenerateGradAttr(OperatorPtr op, OperatorPtr grad_op) {
    const OpProto& op_proto = protos()[op->type_];
    grad_op->attrs_ = op->attrs_;
    grad_op->attrs_.erase("input_format");
    grad_op->attrs_.erase("output_format");
    bool has_in_format = op->attrs_.count("input_format");
    bool has_out_format = op->attrs_.count("output_format");
    // grad_op's inputs_ contains op's inputs_, outputs_ and gradients of
    // outpus_. So grad_op's input_format is necessary when op has
    // either input_format or output_format.
    if (has_in_format || has_out_format) {
      std::vector<int> old_in_format;
      std::vector<int> old_out_format;
      has_in_format
          ? old_in_format = op->GetAttr<std::vector<int>>("input_format")
          : old_in_format = std::vector<int>(op_proto.inputs_size()),
            std::iota(old_in_format.begin(), old_in_format.end(), 0);
      has_out_format
          ? old_out_format = op->GetAttr<std::vector<int>>("output_format")
          : old_out_format = std::vector<int>(op_proto.outputs_size()),
            std::iota(old_out_format.begin(), old_out_format.end(), 0);

      std::vector<int> in_format;
      in_format.reserve(old_in_format.size() + old_out_format.size() * 2);
      int base = 0;
      for (const int& idx : old_in_format) {
        in_format.emplace_back(idx + base);
      }
      base += op->inputs_.size();
      for (const int& idx : old_out_format) {
        in_format.emplace_back(idx + base);
      }
      base += op->outputs_.size();
      for (const int& idx : old_in_format) {
        in_format.emplace_back(idx + base);
      }
      grad_op->attrs_["input_format"] = in_format;
      // grad_op's outputs_ contains gradients of op's inputs_. So grad_op's
      // output_format is necessary only when op has input_format.
      if (has_in_format) {
        std::vector<int> out_format;
        out_format.reserve(op_proto.inputs_size());
        std::copy(old_in_format.begin(), old_in_format.end(),
                  std::back_inserter(out_format));
        grad_op->attrs_["output_format"] = out_format;
      }
    }
D
dongzhihong 已提交
426
  }
427
};
428 429 430 431

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
432
  OpRegisterHelper(const char* op_type) {
433 434 435 436
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

D
dongzhihong 已提交
437 438 439 440 441 442 443 444
template <typename OpType>
class GradOpRegisterHelper {
 public:
  GradOpRegisterHelper(const char* op_type) {
    OpRegistry::RegisterGradOp<OpType>(op_type);
  }
};

445 446 447
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
448 449 450 451 452 453
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

454 455 456
/**
 * Macro to Register Operator.
 */
Y
Yu Yang 已提交
457 458 459 460 461 462 463
#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

D
dongzhihong 已提交
464
/**
F
fengjiayi 已提交
465
 * Macro to Register Gradient Operator.
D
dongzhihong 已提交
466 467 468
 */
#define REGISTER_GRADIENT_OP(__op_type, __op_class)            \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                              \
F
fengjiayi 已提交
469
      __reg_gradient_op_##__reg_op__##__op_type,               \
D
dongzhihong 已提交
470 471 472 473 474
      "REGISTER_GRADIENT_OP must be in global namespace");     \
  static ::paddle::framework::GradOpRegisterHelper<__op_class> \
      __op_register_##__op_type##__(#__op_type);               \
  int __op_register_##__op_type##_handle__() { return 0; }

475 476 477
/**
 * Macro to Register OperatorKernel.
 */
478
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...)             \
Y
Yu Yang 已提交
479
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
480
      __reg_op_kernel_##type##_##DEVICE_TYPE##__,                         \
Y
Yu Yang 已提交
481 482 483 484 485 486
      "REGISTER_OP_KERNEL must be in global namespace");                  \
  struct __op_kernel_register__##type##__ {                               \
    __op_kernel_register__##type##__() {                                  \
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
487
          .reset(new __VA_ARGS__());                                      \
Y
Yu Yang 已提交
488 489 490
    }                                                                     \
  };                                                                      \
  static __op_kernel_register__##type##__ __reg_kernel_##type##__;        \
491
  int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
Y
Yu Yang 已提交
492

493 494 495
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
496

497 498 499
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
500

501 502 503 504
/**
 * Macro to mark what Operator and Kernel we will use and tell the compiler to
 * link them into target.
 */
Y
Yu Yang 已提交
505 506 507 508 509 510 511 512
#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
513 514 515 516 517 518 519 520
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
521

522 523
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type)       \
Y
Yu Yang 已提交
524
  USE_OP_WITHOUT_KERNEL(op_type); \
525
  USE_OP_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
526

527 528
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
Y
Yu Yang 已提交
529
#else
530 531
#define USE_OP(op_type) \
  USE_OP_CPU(op_type);  \
Y
Yu Yang 已提交
532 533
  USE_OP_KERNEL(op_type, GPU)
#endif
534 535 536

}  // namespace framework
}  // namespace paddle