node.py 7.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

D
dongdaxiang 已提交
14
import ps_pb2 as pslib
D
dongdaxiang 已提交
15

H
heqiaozhi 已提交
16

D
dongdaxiang 已提交
17
class Server(object):
H
heqiaozhi 已提交
18 19 20 21
    """
        A Server basic class.
    """

D
dongdaxiang 已提交
22 23 24 25 26
    def __init__(self):
        pass


class Worker(object):
H
heqiaozhi 已提交
27 28 29 30
    """
        A Worker basic class.
    """

D
dongdaxiang 已提交
31 32 33 34 35
    def __init__(self):
        pass


class DownpourServer(Server):
H
heqiaozhi 已提交
36 37 38 39 40 41 42 43
    """
        DownpourServer class is used to generate server program_desc
        Args:
            server: it is pslib.ServerParameter() 
        Examples:
            server = DownpourServer()
    """

D
dongdaxiang 已提交
44
    def __init__(self):
D
dongdaxiang 已提交
45
        self.server_ = pslib.ServerParameter()
H
heqiaozhi 已提交
46 47 48 49 50 51
        self.server_.downpour_server_param.service_param.start_server_port = 0
        self.server_.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self.server_.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self.server_.downpour_server_param.service_param.service_class = "DownpourPsService"
        self.server_.downpour_server_param.service_param.start_server_port = 0
        self.server_.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
52

H
heqiaozhi 已提交
53 54 55 56 57 58 59 60 61 62 63 64
    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
D
dongdaxiang 已提交
65
        table = self.server_.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
66
        table.table_id = table_id
H
heqiaozhi 已提交
67
        table.table_class = "DownpourSparseTable"
68
        table.type = pslib.PS_SPARSE_TABLE
D
dongdaxiang 已提交
69
        table.accessor.accessor_class = "DownpourFeatureValueAccessor"
H
heqiaozhi 已提交
70 71 72 73
        table.accessor.sparse_sgd_param.learning_rate = learning_rate
        table.accessor.sparse_sgd_param.initial_g2sum = 3
        table.accessor.sparse_sgd_param.initial_range = 1e-4
        table.accessor.sparse_sgd_param.weight_bounds.extend([-10, 10])
H
heqiaozhi 已提交
74

H
heqiaozhi 已提交
75 76
        table.accessor.embedx_dim = 8
        table.accessor.embedx_threshold = 5
H
heqiaozhi 已提交
77
        table.accessor.fea_dim = 11
H
heqiaozhi 已提交
78 79 80 81 82 83 84
        table.accessor.downpour_accessor_param.nonclk_coeff = 0.1
        table.accessor.downpour_accessor_param.click_coeff = 2
        table.accessor.downpour_accessor_param.base_threshold = 0.2
        table.accessor.downpour_accessor_param.delta_threshold = 0.15
        table.accessor.downpour_accessor_param.delta_keep_days = 31
        table.accessor.downpour_accessor_param.show_click_decay_rate = 0.999
        table.accessor.downpour_accessor_param.delete_threshold = 0.8
D
dongdaxiang 已提交
85

H
heqiaozhi 已提交
86 87 88 89 90 91 92 93 94 95 96
    def add_dense_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
D
dongdaxiang 已提交
97
        table = self.server_.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
98
        table.table_id = table_id
H
heqiaozhi 已提交
99
        table.table_class = "DownpourDenseTable"
100
        table.type = pslib.PS_DENSE_TABLE
D
dongdaxiang 已提交
101
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
H
heqiaozhi 已提交
102
        table.accessor.dense_sgd_param.name = "adam"
H
heqiaozhi 已提交
103
        table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
H
heqiaozhi 已提交
104 105
        table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
        table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
H
heqiaozhi 已提交
106 107 108
        table.accessor.dense_sgd_param.adam.ada_epsilon = 1e-8
        table.accessor.dense_sgd_param.adam.mom_decay_rate = 0.99
        table.accessor.dense_sgd_param.naive.learning_rate = 0.0002
109
        fea_dim = 0
H
heqiaozhi 已提交
110 111
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
112 113
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
        table.accessor.fea_dim = fea_dim
D
dongdaxiang 已提交
114

H
heqiaozhi 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
        table = self.server_.downpour_server_param.downpour_table_param.add()
        table.table_id = table_id
        table.table_class = "DownpourDenseTable"
        table.type = pslib.PS_DENSE_TABLE
        table.accessor.accessor_class = "DownpourDenseValueAccessor"
        table.accessor.dense_sgd_param.name = "summary"
        table.accessor.dense_sgd_param.summary.summary_decay_rate = 0.999999
        fea_dim = 0
        for param in filter(lambda x: x.name.find("embedding") == -1,
                            param_var):
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
        table.accessor.fea_dim = fea_dim

D
dongdaxiang 已提交
139
    def get_desc(self):
H
heqiaozhi 已提交
140 141 142
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
143 144 145 146
        return self.server_


class DownpourWorker(Worker):
H
heqiaozhi 已提交
147 148 149 150 151 152 153 154 155
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
            worker: it is pslib.DownpourTrainerParameter 
        Examples:
            worker = DownpourWorker(1)
    """

D
dongdaxiang 已提交
156 157
    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
158
        self.worker_ = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
159

H
heqiaozhi 已提交
160 161 162 163 164 165 166 167 168 169 170 171
    def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
                         slot_value_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            slot_key_vars(string): slot key id 
            slot_value_var(string): slot key value after embedding
        Returns:
            return None 
        """
172
        table = self.worker_.sparse_table.add()
D
dongdaxiang 已提交
173
        table.table_id = table_id
H
heqiaozhi 已提交
174 175
        table.slot_key.extend([var.name for var in slot_key_vars])
        table.slot_value.extend([var.name for var in slot_value_vars])
176 177
        table.slot_gradient.extend(
            [var.name + "@GRAD" for var in slot_value_vars])
D
dongdaxiang 已提交
178

H
heqiaozhi 已提交
179 180 181 182 183 184 185 186 187 188 189
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars):
        """
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
            param_var(list): all dense param. it is a list.
            grad_var(list): all dense grad parm it is a list.
        Returns:
            return None 
        """
190
        table = self.worker_.dense_table.add()
D
dongdaxiang 已提交
191
        table.table_id = table_id
H
heqiaozhi 已提交
192 193 194 195 196 197
        table.dense_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [p.name for p in param_vars]))
        table.dense_gradient_variable_name.extend(
            filter(lambda x: x.find("embedding") == -1,
                   [g.name for g in grad_vars]))
D
dongdaxiang 已提交
198 199

    def get_desc(self):
H
heqiaozhi 已提交
200 201 202
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
203
        return self.worker_