dataprovider_converter.py 6.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.trainer.PyDataProvider2 as dp2
import collections
import swig_paddle
Y
Yu Yang 已提交
18
import numpy
Y
yuyang18 已提交
19 20 21 22 23 24 25

__all__ = ['DataProviderConverter']


class IScanner(object):
    def __init__(self, input_type, pos):
        self.input_type = input_type
D
dangqingqing 已提交
26 27
        if not isinstance(self.input_type, dp2.InputType):
            raise ValueError("input type should be dataprovider2.InputType")
Y
yuyang18 已提交
28
        self.pos = pos
D
dangqingqing 已提交
29 30 31 32 33 34 35 36
        # data_in_gpu is used to indicate whether to create argument on GPU
        # or not in GPU mode. Now if using one thread (trainer_count=1),
        # trainer uses NeuralNetwork which needs to create argument on GPU
        # before calling forward function. So, set data_in_gpu to True.
        # Otherwise, trainer uses MultiGradientMachine which will transfer
        # data from CPU to GPU in the forward function, set data_in_gpu to
        # False in this case.
        self.data_in_gpu = True if swig_paddle.isUsingGpu() and (
D
dangqingqing 已提交
37
            swig_paddle.getTrainerCount() == 1) else False
Y
yuyang18 已提交
38 39 40 41 42 43 44 45 46

    def scan(self, dat):
        pass

    def finish_scan(self, argument):
        pass


class DenseScanner(IScanner):
47 48 49 50
    """
    :type __mat__: numpy.ndarray
    """

Y
yuyang18 已提交
51 52
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
Y
Yu Yang 已提交
53
        self.__mat__ = None
Y
yuyang18 已提交
54 55

    def scan(self, dat):
Y
Yu Yang 已提交
56 57 58 59
        if self.__mat__ is None:
            self.__mat__ = numpy.array([dat], dtype='float32')
        else:
            self.__mat__ = numpy.append(self.__mat__, [dat], axis=0)
Y
yuyang18 已提交
60 61 62

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
63 64
        if self.__mat__.dtype != numpy.float32:
            self.__mat__ = self.__mat__.astype(numpy.float32)
65
        m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True,
D
dangqingqing 已提交
66
                                                    self.use_gpu)
Y
yuyang18 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
        argument.setSlotValue(self.pos, m)


class SparseBinaryScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__rows__ = [0]
        self.__cols__ = []
        self.__height__ = 0
        self.__value__ = []

    def scan(self, dat):
        self.extend_cols(dat)
E
emailweixu 已提交
80
        self.__rows__.append(len(self.__cols__))
Z
Z-TAO 已提交
81
        self.__height__ += 1
Y
yuyang18 已提交
82 83 84 85 86 87

    def extend_cols(self, dat):
        self.__cols__.extend(dat)

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
88 89 90 91 92 93 94
        m = swig_paddle.Matrix.createSparse(
            self.__height__,
            self.input_type.dim,
            len(self.__cols__),
            len(self.__value__) == 0,
            False,  # trans
            False)  # TODO supoort GPU
Y
yuyang18 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        assert isinstance(m, swig_paddle.Matrix)
        m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
        argument.setSlotValue(self.pos, m)


class SparseFloatScanner(SparseBinaryScanner):
    def __init__(self, input_type, pos):
        SparseBinaryScanner.__init__(self, input_type, pos)

    def extend_cols(self, dat):
        self.__cols__.extend((x[0] for x in dat))
        self.__value__.extend((x[1] for x in dat))


class IndexScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__ids__ = []

    def scan(self, dat):
        self.__ids__.append(dat)

    def finish_scan(self, argument):
D
dangqingqing 已提交
118
        ids = swig_paddle.IVector.create(self.__ids__, self.use_gpu)
Y
yuyang18 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        assert isinstance(argument, swig_paddle.Arguments)
        argument.setSlotIds(self.pos, ids)


class SequenceScanner(IScanner):
    def __init__(self, input_type, pos, inner_scanner, setter):
        IScanner.__init__(self, input_type, pos)
        self.__seq__ = [0]
        self.__inner_scanner__ = inner_scanner
        self.__setter__ = setter

    def scan(self, dat):
        self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
        for each in dat:
            self.__inner_scanner__.scan(each)

    def finish_scan(self, argument):
        seq = swig_paddle.IVector.create(self.__seq__, False)
        self.__setter__(argument, self.pos, seq)
        self.__inner_scanner__.finish_scan(argument)

    def get_size(self, dat):
        if isinstance(self.__inner_scanner__, SequenceScanner):
            return sum(self.__inner_scanner__.get_size(item) for item in dat)
        else:
            return len(dat)


class DataProviderConverter(object):
    def __init__(self, input_types):
        self.input_types = input_types
        assert isinstance(self.input_types, collections.Sequence)
        for each in self.input_types:
            assert isinstance(each, dp2.InputType)

    def convert(self, dat, argument=None):
        if argument is None:
            argument = swig_paddle.Arguments.createArguments(0)
        assert isinstance(argument, swig_paddle.Arguments)
        argument.resize(len(self.input_types))

160 161 162 163
        scanners = [
            DataProviderConverter.create_scanner(i, each_type)
            for i, each_type in enumerate(self.input_types)
        ]
Y
yuyang18 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

        for each_sample in dat:
            for each_step, scanner in zip(each_sample, scanners):
                scanner.scan(each_step)

        for scanner in scanners:
            scanner.finish_scan(argument)

        return argument

    def __call__(self, dat, argument=None):
        return self.convert(dat, argument)

    @staticmethod
    def create_scanner(i, each):
        assert isinstance(each, dp2.InputType)
        retv = None
        if each.type == dp2.DataType.Dense:
            retv = DenseScanner(each, i)
        elif each.type == dp2.DataType.Index:
            retv = IndexScanner(each, i)
        elif each.type == dp2.DataType.SparseNonValue:
            retv = SparseBinaryScanner(each, i)
        elif each.type == dp2.DataType.SparseValue:
            retv = SparseFloatScanner(each, i)
        assert retv is not None

        if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
192 193 194 195 196 197 198 199 200 201
            retv = SequenceScanner(
                each, i, retv,
                lambda a, p, seq: a.setSlotSubSequenceStartPositions(p, seq))

        if each.seq_type in [
                dp2.SequenceType.SUB_SEQUENCE, dp2.SequenceType.SEQUENCE
        ]:
            retv = SequenceScanner(
                each, i, retv,
                lambda a, p, seq: a.setSlotSequenceStartPositions(p, seq))
Y
yuyang18 已提交
202
        return retv