op_registry.h 14.6 KB
Newer Older
1 2
#pragma once

3
#include <algorithm>
4
#include <atomic>
Y
Yu Yang 已提交
5
#include <type_traits>
6 7
#include <unordered_map>
#include <unordered_set>
Q
Qiao Longfei 已提交
8
#include "paddle/framework/attr_checker.h"
F
fengjiayi 已提交
9
#include "paddle/framework/grad_op_creator.h"
10
#include "paddle/framework/op_desc.pb.h"
D
dongzhihong 已提交
11
#include "paddle/framework/scope.h"
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);

  static Attribute GetAttrValue(const AttrDesc& attr_desc) {
    switch (attr_desc.type()) {
      case paddle::framework::AttrType::INT: {
        return attr_desc.i();
      }
      case paddle::framework::AttrType::FLOAT: {
        return attr_desc.f();
      }
      case paddle::framework::AttrType::STRING: {
        return attr_desc.s();
      }
      case paddle::framework::AttrType::INTS: {
        std::vector<int> val(attr_desc.ints_size());
        for (int i = 0; i < attr_desc.ints_size(); ++i) {
          val[i] = attr_desc.ints(i);
        }
        return val;
      }
      case paddle::framework::AttrType::FLOATS: {
        std::vector<float> val(attr_desc.floats_size());
        for (int i = 0; i < attr_desc.floats_size(); ++i) {
          val[i] = attr_desc.floats(i);
        }
        return val;
      }
      case paddle::framework::AttrType::STRINGS: {
        std::vector<std::string> val(attr_desc.strings_size());
        for (int i = 0; i < attr_desc.strings_size(); ++i) {
          val[i] = attr_desc.strings(i);
        }
        return val;
      }
    }
    PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
    return boost::blank();
  }
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

65 66 67 68 69 70 71 72
  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate() {
    validated_ = true;
    CheckNoDuplicatedInOutAttrs();
  }
73

74
 protected:
75
  void AddInput(const std::string& name, const std::string& comment,
76
                bool multiple = false, bool ignore_gradient = false) {
77
    auto input = proto_->mutable_inputs()->Add();
78 79
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
D
dongzhihong 已提交
80
    input->set_ignore_gradient(ignore_gradient);
81 82 83 84 85 86
    input->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleInput();
    }
  }

87 88 89
  void AddInputs(const std::string& name, const std::string& comment,
                 bool ignore_gradient = false) {
    AddInput(name, comment, true, ignore_gradient);
90 91
  }

92
  void AddOutput(const std::string& name, const std::string& comment,
93 94
                 bool temporary = false, bool multiple = false,
                 bool ignore_gradient = false) {
95
    auto output = proto_->mutable_outputs()->Add();
96 97
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
D
dongzhihong 已提交
98
    output->set_ignore_gradient(ignore_gradient);
99 100 101 102 103 104 105 106 107 108 109
    output->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleOutput();
    }
    output->set_temporary(temporary);
    if (temporary) {
      SetHasTemporaryOutput();
    }
  }

  void AddOutputs(const std::string& name, const std::string& comment,
110 111
                  bool temporary = false, bool ignore_gradient = false) {
    AddOutput(name, comment, temporary, true, ignore_gradient);
112 113 114 115
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
116 117
                               const std::string& comment,
                               bool generated = false) {
118
    auto attr = proto_->mutable_attrs()->Add();
119 120
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
121
    attr->set_generated(generated);
122 123 124 125 126 127 128 129
    AttrTypeHelper::SetAttrType<T>(attr);
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

178
  void CheckNoDuplicatedInOutAttrs() {
179
    std::unordered_set<std::string> names;
180 181 182 183
    auto checker = [&](const std::string& name) {
      PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
      names.insert(name);
    };
184
    for (auto& attr : proto_->attrs()) {
185 186 187 188 189 190 191
      checker(attr.name());
    }
    for (auto& input : proto_->inputs()) {
      checker(input.name());
    }
    for (auto& output : proto_->outputs()) {
      checker(output.name());
192 193 194
    }
  }

195 196
  OpProto* proto_;
  OpAttrChecker* op_checker_;
197
  bool validated_{false};
198 199 200
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
201 202 203
};

class OpRegistry {
Q
Qiao Longfei 已提交
204
  using OpCreator = std::function<OperatorBase*()>;
Y
Yu Yang 已提交
205
  using VarIndexMap = std::unordered_map<std::string, int>;
Y
Yu Yang 已提交
206
  using VarNameList = std::vector<std::string>;
207 208 209 210

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
211 212
    creators()[op_type] = [] { return new OpType; };
    OpAttrChecker& op_checker = op_checkers()[op_type];
D
dongzhihong 已提交
213
    OpProto& op_proto = protos()[op_type];
214 215
    auto maker = ProtoMakerType(&op_proto, &op_checker);
    maker.Validate();
Y
Yu Yang 已提交
216 217 218 219 220
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
Y
Yu Yang 已提交
221 222 223 224 225 226 227 228 229 230 231

    VarIndexMaps()[op_type].reset(new VarIndexMap());
    auto& varmap = *VarIndexMaps()[op_type];
    int idx = 0;
    for (auto& var : op_proto.inputs()) {
      varmap[var.name()] = idx++;
    }
    idx = 0;
    for (auto& var : op_proto.outputs()) {
      varmap[var.name()] = idx++;
    }
232 233
  }

F
fengjiayi 已提交
234 235 236 237 238
  template <typename OpType>
  static void RegisterGradOp(const std::string& op_type) {
    grad_creators()[op_type] = [] { return new OpType; };
  }

Y
Yu Yang 已提交
239 240 241 242 243 244
  static OperatorPtr CreateOp(const std::string& type,
                              const VarNameList& inputs,
                              const VarNameList& outputs,
                              const AttributeMap& attrs) {
    auto op_create_it = creators().find(type);
    PADDLE_ENFORCE(op_create_it != creators().end(),
F
fengjiayi 已提交
245
                   "Operator %s cannot be found.", type);
246

Y
Yu Yang 已提交
247 248 249 250
    auto op = op_create_it->second();
    op->type_ = type;
    op->inputs_ = inputs;
    op->outputs_ = outputs;
F
fengjiayi 已提交
251

Y
Yu Yang 已提交
252 253
    op->attrs_ = attrs;
    op_checkers().at(type).Check(op->attrs_);
254

Y
Yu Yang 已提交
255
    GenerateTempVariableName(op);
256

Y
Yu Yang 已提交
257
    {
Y
Yu Yang 已提交
258
      auto var_index_it = VarIndexMaps().find(type);
Y
Yu Yang 已提交
259 260 261 262
      if (var_index_it != VarIndexMaps().end()) {
        op->in_out_idxs_ = var_index_it->second;
      }
    }
Y
Yu Yang 已提交
263

Q
Qiao Longfei 已提交
264
    op->Init();
Y
Yu Yang 已提交
265
    return OperatorPtr(op);
266 267
  }

Q
Qiao Longfei 已提交
268
  static OperatorPtr CreateOp(const OpDesc& op_desc) {
Y
Yu Yang 已提交
269 270
    std::vector<std::string> inputs;
    inputs.reserve((size_t)op_desc.inputs_size());
271
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
Y
Yu Yang 已提交
272 273 274 275
              std::back_inserter(inputs));

    std::vector<std::string> outputs;
    outputs.reserve((size_t)op_desc.outputs_size());
276
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
Y
Yu Yang 已提交
277 278 279
              std::back_inserter(outputs));

    AttributeMap attrs;
280
    for (auto& attr : op_desc.attrs()) {
Y
Yu Yang 已提交
281
      attrs[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
282
    }
Y
Yu Yang 已提交
283 284

    return CreateOp(op_desc.type(), inputs, outputs, attrs);
285 286
  }

F
fengjiayi 已提交
287
  static OperatorPtr CreateGradOp(OperatorPtr op) {
288 289
    GradOpCreator creator(op.get());
    OperatorPtr grad_op(creator.Create());
F
fengjiayi 已提交
290 291
    grad_op->Init();
    return grad_op;
D
dongzhihong 已提交
292 293
  }

Y
Yu Yang 已提交
294 295 296 297 298
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

299 300 301 302 303
  static std::unordered_map<std::string, OpCreator>& grad_creators() {
    static std::unordered_map<std::string, OpCreator> grad_creators_;
    return grad_creators_;
  }

Y
Yu Yang 已提交
304 305 306 307 308 309
  static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
  VarIndexMaps() {
    static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
    return maps_;
  }

310
 private:
F
fengjiayi 已提交
311 312 313 314 315 316 317 318 319 320
  static std::unordered_map<std::string, OpCreator>& creators() {
    static std::unordered_map<std::string, OpCreator> creators_;
    return creators_;
  }

  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };

321
  static void GenerateTempVariableName(OperatorBase* op) {
322 323 324
    static std::atomic<size_t> gUniqId(0UL);
    for (auto& outname : op->outputs_) {
      if (outname == OperatorBase::TMP_VAR_NAME()) {
325
        outname += op->type_;
326 327 328 329 330
        outname += "@";
        outname += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
331
};
332 333 334 335

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
336
  OpRegisterHelper(const char* op_type) {
337 338 339 340
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

D
dongzhihong 已提交
341 342 343 344 345 346 347 348
template <typename OpType>
class GradOpRegisterHelper {
 public:
  GradOpRegisterHelper(const char* op_type) {
    OpRegistry::RegisterGradOp<OpType>(op_type);
  }
};

349 350 351
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
352 353 354 355 356 357
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

358 359 360
/**
 * Macro to Register Operator.
 */
Y
Yu Yang 已提交
361 362 363 364 365 366 367
#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

D
dongzhihong 已提交
368
/**
F
fengjiayi 已提交
369
 * Macro to Register Gradient Operator.
D
dongzhihong 已提交
370 371 372
 */
#define REGISTER_GRADIENT_OP(__op_type, __op_class)            \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                              \
F
fengjiayi 已提交
373
      __reg_gradient_op_##__reg_op__##__op_type,               \
D
dongzhihong 已提交
374 375 376 377 378
      "REGISTER_GRADIENT_OP must be in global namespace");     \
  static ::paddle::framework::GradOpRegisterHelper<__op_class> \
      __op_register_##__op_type##__(#__op_type);               \
  int __op_register_##__op_type##_handle__() { return 0; }

379 380 381
/**
 * Macro to Register OperatorKernel.
 */
382
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...)             \
Y
Yu Yang 已提交
383
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
384
      __reg_op_kernel_##type##_##DEVICE_TYPE##__,                         \
Y
Yu Yang 已提交
385 386 387 388 389 390
      "REGISTER_OP_KERNEL must be in global namespace");                  \
  struct __op_kernel_register__##type##__ {                               \
    __op_kernel_register__##type##__() {                                  \
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
391
          .reset(new __VA_ARGS__());                                      \
Y
Yu Yang 已提交
392 393 394
    }                                                                     \
  };                                                                      \
  static __op_kernel_register__##type##__ __reg_kernel_##type##__;        \
395
  int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
Y
Yu Yang 已提交
396

397 398 399
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
400

401 402 403
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
404

405 406 407 408
/**
 * Macro to mark what Operator and Kernel we will use and tell the compiler to
 * link them into target.
 */
Y
Yu Yang 已提交
409 410 411 412 413 414 415 416
#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
417 418 419 420 421 422 423 424
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
425

426 427
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type)       \
Y
Yu Yang 已提交
428
  USE_OP_WITHOUT_KERNEL(op_type); \
429
  USE_OP_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
430

431 432
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
Y
Yu Yang 已提交
433
#else
434 435
#define USE_OP(op_type) \
  USE_OP_CPU(op_type);  \
Y
Yu Yang 已提交
436 437
  USE_OP_KERNEL(op_type, GPU)
#endif
438 439 440

}  // namespace framework
}  // namespace paddle