CostLayer.cpp 19.8 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <algorithm>
#include "paddle/utils/Logging.h"
#include <cmath>
#include "CostLayer.h"

#include "paddle/math/SparseMatrix.h"

namespace paddle {

bool CostLayer::init(const LayerMap& layerMap,
                     const ParameterMap& parameterMap) {
  bool ret = Layer::init(layerMap, parameterMap);
28
  coeff_ = config_.coeff();
Z
zhangjinchao01 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
  if (!ret) return ret;
  CHECK_GE(inputLayers_.size(), 2UL);
  CHECK_LE(inputLayers_.size(), 3UL);
  if (inputLayers_.size() == 3) {
    weightLayer_ = inputLayers_[2];
  }
  return true;
}

void CostLayer::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInputValue(*getOutputLayer())->getHeight();
  int size = 1;
  resetOutput(batchSize, size);

  const MatrixPtr& output = getInputValue(*getOutputLayer());
  Argument label = getInput(*getLabelLayer());

  /* get the cost value for each sample*/
  forwardImp(*output, label, *getOutputValue());
  if (weightLayer_) {
    const MatrixPtr& weight = getInputValue(*weightLayer_);
    getOutputValue()->dotMul(*getOutputValue(), *weight);
  }
}

void CostLayer::backward(const UpdateCallback& callback) {
  (void)callback;

  const Argument& output = getInput(*getOutputLayer());
  Argument label = getInput(*getLabelLayer());

  bool support = true;
  if (weightLayer_) {
    support = output.grad->getAbsSum() == 0;
  }

  backwardImp(*output.value, label, *output.grad);

  if (weightLayer_) {
    CHECK(support) << "Weighted cost layer '" << getName()
                   << "' must be the last layer "
                      "connected to the output layer '"
                   << getOutputLayer()->getName() << "'";
    output.grad->rowScale(0, *output.grad, *getInputValue(*weightLayer_));
  }
  if (coeff_ != real(1.0f)) {
    output.grad->add(coeff_, 0);
  }
}

//
// class MultiClassCrossEntropy
//
bool MultiClassCrossEntropy::init(const LayerMap& layerMap,
                                  const ParameterMap& parameterMap) {
  return CostLayer::init(layerMap, parameterMap);
}

90 91
void MultiClassCrossEntropy::forwardImp(Matrix& output,
                                        Argument& label,
Z
zhangjinchao01 已提交
92 93 94 95
                                        Matrix& target) {
  target.oneHotCrossEntropy(output, *label.ids);
}

96 97 98
void MultiClassCrossEntropy::backwardImp(Matrix& output,
                                         Argument& label,
                                         Matrix& outputG) {
Z
zhangjinchao01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  outputG.oneHotCrossEntropyBp(output, *label.ids);
}

//
// class MultiClassCrossEntropyWithSelfNorm
//
REGISTER_LAYER(multi_class_cross_entropy_with_selfnorm,
               MultiClassCrossEntropyWithSelfNorm);

bool MultiClassCrossEntropyWithSelfNorm::init(
    const LayerMap& layerMap, const ParameterMap& parameterMap) {
  return CostLayer::init(layerMap, parameterMap);
}

void MultiClassCrossEntropyWithSelfNorm::forwardImp(Matrix& output,
                                                    Argument& label,
                                                    Matrix& target) {
  Matrix::resizeOrCreate(sftMaxSum_, output.getHeight(), 1, false, useGpu_);
  output.rowSum(*sftMaxSum_);
  sftMaxSum_->log();

  target.oneHotCrossEntropy(output, *label.ids);
  target.add(*sftMaxSum_);

  sftMaxSum_->square();
  target.add(*sftMaxSum_, config_.softmax_selfnorm_alpha());
}

void MultiClassCrossEntropyWithSelfNorm::backwardImp(Matrix& output,
                                                     Argument& label,
                                                     Matrix& outputG) {
  Matrix::resizeOrCreate(sftMaxSum_, output.getHeight(), 1, false, useGpu_);
  output.rowSum(*sftMaxSum_);

  Matrix::resizeOrCreate(sumInv_, output.getHeight(), 1, false, useGpu_);
  sftMaxSum_->reciprocal(*sumInv_);

  outputG.oneHotCrossEntropyBp(output, *label.ids);
  outputG.addColumnVector(*sumInv_);

  sftMaxSum_->log();
  sumInv_->dotMul(*sumInv_, *sftMaxSum_);
  sumInv_->mulScalar(2 * config_.softmax_selfnorm_alpha());

  outputG.addColumnVector(*sumInv_);
}

//
// class SoftBinaryClassCrossEntropy
//
REGISTER_LAYER(soft_binary_class_cross_entropy, SoftBinaryClassCrossEntropy);

bool SoftBinaryClassCrossEntropy::init(const LayerMap& layerMap,
                                       const ParameterMap& parameterMap) {
  return CostLayer::init(layerMap, parameterMap);
}

156 157
void SoftBinaryClassCrossEntropy::forwardImp(Matrix& output,
                                             Argument& label,
Z
zhangjinchao01 已提交
158
                                             Matrix& target) {
159 160
  Matrix::resizeOrCreate(
      targetPerDim_, output.getHeight(), output.getWidth(), false, useGpu_);
Z
zhangjinchao01 已提交
161 162 163 164 165

  targetPerDim_->softCrossEntropy(output, *label.value);
  targetPerDim_->rowSum(target);
}

166 167 168
void SoftBinaryClassCrossEntropy::backwardImp(Matrix& output,
                                              Argument& label,
                                              Matrix& outputG) {
Z
zhangjinchao01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182
  outputG.softCrossEntropyBp(output, *label.value);
}

//
// class SumOfSquaresCostLayer
//

REGISTER_LAYER(square_error, SumOfSquaresCostLayer);

bool SumOfSquaresCostLayer::init(const LayerMap& layerMap,
                                 const ParameterMap& parameterMap) {
  return CostLayer::init(layerMap, parameterMap);
}

183 184
void SumOfSquaresCostLayer::forwardImp(Matrix& output,
                                       Argument& label,
Z
zhangjinchao01 已提交
185 186 187 188
                                       Matrix& target) {
  target.sumOfSquares(output, *label.value);
}

189 190 191
void SumOfSquaresCostLayer::backwardImp(Matrix& output,
                                        Argument& label,
                                        Matrix& outputG) {
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  outputG.sumOfSquaresBp(output, *label.value);
}

//
// class RankingCost
//
bool RankingCost::init(const LayerMap& layerMap,
                       const ParameterMap& parameterMap) {
  posPairCount_ = 0;
  negPairCount_ = 0;

  bool ret = Layer::init(layerMap, parameterMap);
  if (!ret) return ret;
  CHECK_GE(inputLayers_.size(), 3UL);
  CHECK_LE(inputLayers_.size(), 4UL);
  if (inputLayers_.size() == 4) {
    weightLayer_ = inputLayers_[3];
  }
  return true;
}

void RankingCost::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInputValue(*getOutputLayer(0))->getHeight();
  int size = 1;
  resizeOutput(batchSize, size);
  Matrix::resizeOrCreate(margin_, batchSize, size, /* trans= */ false, useGpu_);
  MatrixPtr label = getInputValue(*getLabelLayer());
  if (!label) {
    // input label is not in value, try ids
    IVectorPtr idLabel = getInput(*getLabelLayer()).ids;
    CHECK(idLabel) << "label layer has neither value nor ids";
    CHECK_EQ((size_t)batchSize, idLabel->getSize());
227 228
    Matrix::resizeOrCreate(
        labelBuf_, batchSize, /*width*/ 1, /*trans*/ false, useGpu_);
Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    labelBuf_->copyFrom(*idLabel);
    label = labelBuf_;
  }

  MatrixPtr output[] = {getInputValue(*getOutputLayer(0)),
                        getInputValue(*getOutputLayer(1))};
  MatrixPtr target = this->getOutputValue();
  margin_->sub(*output[0], *output[1]);

  // for validation
  size_t height = output[0]->getHeight();
  target->biggerThan(*(output[0]), *(output[1]), *label);
  double total = static_cast<double>(height);
  if (weightLayer_) {
    const MatrixPtr& weight = getInputValue(*weightLayer_);
    target->dotMul(*target, *weight);
    total = weight->getSum();
  }
  double pos = target->getSum();
  posPairCount_ += pos;
  negPairCount_ += (total - pos);

  // forward
  target->logisticRegressionLoss(*margin_, *label);
  if (weightLayer_) {
    const MatrixPtr& weight = getInputValue(*weightLayer_);
    target->dotMul(*target, *weight);
  }
}

void RankingCost::backward(const UpdateCallback& callback) {
  (void)callback;

  MatrixPtr label = getInputValue(*getLabelLayer());
  if (!label) {
    // input label is not in value, but in ids
    // use labelBuf_ (should already resized and copied during forward)
    label = labelBuf_;
  }

269 270
  Matrix::resizeOrCreate(
      marginGrad_, label->getHeight(), 1, /* trans= */ false, useGpu_);
Z
zhangjinchao01 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  marginGrad_->zeroMem();
  marginGrad_->logisticRegressionLossBp(*margin_, *label);
  if (weightLayer_) {
    const MatrixPtr& weight = getInputValue(*weightLayer_);
    marginGrad_->dotMul(*marginGrad_, *weight);
  }

  getInputGrad(0)->add(*marginGrad_);
  getInputGrad(1)->sub(*marginGrad_);
}

void RankingCost::onPassEnd() {
  double ratio = posPairCount_ / ((negPairCount_ <= 0) ? 1.0 : negPairCount_);
  LOG(INFO) << "calc pos/neg: " << ratio << " pos= " << posPairCount_
            << " neg= " << negPairCount_;

  posPairCount_ = 0;
  negPairCount_ = 0;
}

//
// class LambdaCost
//
REGISTER_LAYER(lambda_cost, LambdaCost);

bool LambdaCost::init(const LayerMap& layerMap,
                      const ParameterMap& parameterMap) {
  truncationSize_ = config_.ndcg_num();
  maxSortSize_ = config_.max_sort_size();
  if (maxSortSize_ != -1) {
    CHECK_GE(maxSortSize_, truncationSize_)
        << "maxSortSize must be greater than or equal to NDCG size!";
  }
  LOG(INFO) << "LambdaRank v1.3, NDCG size = " << truncationSize_
            << ", Max partial sort size = " << maxSortSize_;
  CHECK(!useGpu_) << "LambdaRank supports CPU only!";
  return Layer::init(layerMap, parameterMap);
}

void LambdaCost::forward(PassType passType) {
  Layer::forward(passType);

  /* malloc memory for the output_ if necessary */
  int batchSize = getInputValue(*getOutputLayer())->getHeight();
  resizeOutput(batchSize, 1);

  MatrixPtr score = getInputValue(*getScoreLayer());
  MatrixPtr output = getInputValue(*getOutputLayer());
  MatrixPtr target = this->getOutputValue();

  real* scoreData = score->getData();
  real* outputData = output->getData();
  real* targetData = target->getData();

325
  auto startPos = getInput(*getOutputLayer()).sequenceStartPositions;
Z
zhangjinchao01 已提交
326 327 328 329 330
  const int* startPosData = startPos->getData(false);
  size_t batchNum = startPos->getSize() - 1;
  for (size_t i = 0; i < batchNum; ++i) {
    int beginPos = startPosData[i];
    int endPos = startPosData[i + 1];
331 332
    real NDCG = calcNDCG(
        outputData + beginPos, scoreData + beginPos, endPos - beginPos);
Z
zhangjinchao01 已提交
333 334 335 336 337 338 339 340 341 342
    for (int j = beginPos; j < endPos; ++j) {
      targetData[j] = NDCG;
    }
  }
}

void LambdaCost::backward(const UpdateCallback& callback) {
  (void)callback;
  MatrixPtr score = getInputValue(*getScoreLayer());
  MatrixPtr output = getInputValue(*getOutputLayer());
343 344 345 346 347
  Matrix::resizeOrCreate(marginGrad_,
                         score->getHeight(),
                         1,
                         /* trans= */ false,
                         useGpu_);
Z
zhangjinchao01 已提交
348 349 350 351 352 353
  marginGrad_->zeroMem();

  real* gradData = marginGrad_->getData();
  real* scoreData = score->getData();
  real* outputData = output->getData();

354
  auto startPos = getInput(*getOutputLayer()).sequenceStartPositions;
Z
zhangjinchao01 已提交
355 356 357 358 359 360
  const int* startPosData = startPos->getData(false);
  size_t batchNum = startPos->getSize() - 1;

  for (size_t i = 0; i < batchNum; ++i) {
    int beginPos = startPosData[i];
    int endPos = startPosData[i + 1];
361 362 363
    calcGrad(outputData + beginPos,
             scoreData + beginPos,
             gradData + beginPos,
Z
zhangjinchao01 已提交
364 365 366 367 368 369 370 371
             endPos - beginPos);
  }

  getInputGrad(0)->add(*marginGrad_);
}

void LambdaCost::onPassEnd() {}

372 373 374 375
void LambdaCost::calcGrad(const real* outputScore,
                          const real* score,
                          real* gradData,
                          int size) {
Z
zhangjinchao01 已提交
376 377 378 379 380 381 382 383 384
  CHECK_GE(size, truncationSize_)
      << "Invalid: (Sample num in the same list) < (NDCG truncation num) !";
  int sortSize = maxSortSize_ == -1 ? size : std::min(maxSortSize_, size);

  scorePair_.clear();
  for (int i = 0; i < size; ++i) {
    scorePair_.push_back(std::make_pair(score[i], i));
  }
  if (size <= sortSize) {
385 386
    std::sort(scorePair_.begin(),
              scorePair_.end(),
Z
zhangjinchao01 已提交
387 388 389 390 391
              [](const std::pair<real, int>& a, const std::pair<real, int>& b) {
                return a.first > b.first;
              });
  } else {
    std::partial_sort(
392 393 394
        scorePair_.begin(),
        scorePair_.begin() + sortSize,
        scorePair_.end(),
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        [](const std::pair<real, int>& a, const std::pair<real, int>& b) {
          return a.first > b.first;
        });
  }

  real maxDCG = 0;
  for (int i = 0; i < truncationSize_; ++i) {
    maxDCG += (std::pow(2, scorePair_[i].first) - 1) / std::log(i + 2);
  }
  CHECK_GT(maxDCG, 0) << "Invalid: max DCG = 0!";

  for (int i = 0; i < sortSize; ++i) {
    for (int j = i + 1; j < size; ++j) {
      int index_i = scorePair_[i].second;
      int index_j = scorePair_[j].second;
      real score_i = score[index_i];
      real score_j = score[index_j];
      real dcgDif = 0;
      if (j < sortSize) {
        dcgDif = (std::pow(2, score_i) - std::pow(2, score_j)) /
                 (std::log(i + 2) - std::log(j + 2));
      } else {
        dcgDif =
            (std::pow(2, score_i) - std::pow(2, score_j)) / std::log(i + 2);
      }

      real lambda_ij =
          -std::abs(dcgDif) /
          (1 + std::exp(outputScore[index_i] - outputScore[index_j]));
      gradData[index_i] += lambda_ij / maxDCG;
      gradData[index_j] -= lambda_ij / maxDCG;
    }
  }
}

430 431
real LambdaCost::calcNDCG(const real* outputScore,
                          const real* score,
Z
zhangjinchao01 已提交
432 433 434 435 436 437 438 439 440
                          int size) {
  CHECK_GE(size, truncationSize_)
      << "Invalid: (Sample num in the same list) < (NDCG truncation num) !";

  outputScorePair_.clear();
  for (int i = 0; i < size; ++i) {
    outputScorePair_.push_back(std::make_pair(outputScore[i], i));
  }
  std::partial_sort(
441 442
      outputScorePair_.begin(),
      outputScorePair_.begin() + truncationSize_,
Z
zhangjinchao01 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456
      outputScorePair_.end(),
      [](const std::pair<real, int>& a, const std::pair<real, int>& b) {
        return a.first > b.first;
      });

  real DCG = 0;
  for (int i = 0; i < truncationSize_; ++i) {
    DCG +=
        (std::pow(2, score[outputScorePair_[i].second]) - 1) / std::log(i + 2);
  }

  scoreVec_.resize(size);
  std::copy(score, score + size, scoreVec_.begin());
  real maxDCG = 0;
457 458 459 460
  std::partial_sort(scoreVec_.begin(),
                    scoreVec_.begin() + truncationSize_,
                    scoreVec_.end(),
                    std::greater<real>());
Z
zhangjinchao01 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
  for (int i = 0; i < truncationSize_; ++i) {
    maxDCG += (std::pow(2, scoreVec_[i]) - 1) / std::log(i + 2);
  }
  CHECK_GT(maxDCG, 0) << "Invalid: max DCG = 0!";

  return DCG / maxDCG;
}

//
// class MultiBinaryLabelCrossEntropy
//

REGISTER_LAYER(multi_binary_label_cross_entropy, MultiBinaryLabelCrossEntropy);

bool MultiBinaryLabelCrossEntropy::init(const LayerMap& layerMap,
                                        const ParameterMap& parameterMap) {
  return CostLayer::init(layerMap, parameterMap);
}

480 481
void MultiBinaryLabelCrossEntropy::forwardImp(Matrix& output,
                                              Argument& label,
Z
zhangjinchao01 已提交
482
                                              Matrix& target) {
H
Haonan 已提交
483 484 485
  MatrixPtr value = nullptr;
  if (label.ids) {
    CHECK(!label.value);
H
Haonan 已提交
486
    value = label.ids->toOneHotSparseMatrix(output.getWidth(), useGpu_);
H
Haonan 已提交
487 488 489 490
  } else {
    CHECK(label.value);
    value = label.value;
  }
491

H
Haonan 已提交
492 493 494
  if (dynamic_cast<CpuSparseMatrix*>(value.get()) ||
      dynamic_cast<GpuSparseMatrix*>(value.get())) {
    target.multiBinaryLabelCrossEntropy(output, *value);
Z
zhangjinchao01 已提交
495
  } else {
496 497
    Matrix::resizeOrCreate(
        targetPerDim_, output.getHeight(), output.getWidth(), false, useGpu_);
Z
zhangjinchao01 已提交
498

H
Haonan 已提交
499
    targetPerDim_->binaryLabelCrossEntropy(output, *value);
Z
zhangjinchao01 已提交
500 501 502 503
    targetPerDim_->rowSum(target);
  }
}

504 505 506
void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output,
                                               Argument& label,
                                               Matrix& outputG) {
H
Haonan 已提交
507 508 509
  MatrixPtr value = nullptr;
  if (label.ids) {
    CHECK(!value);
H
Haonan 已提交
510
    value = label.ids->toOneHotSparseMatrix(output.getWidth(), useGpu_);
H
Haonan 已提交
511 512 513 514
  } else {
    CHECK(label.value);
    value = label.value;
  }
515

H
Haonan 已提交
516 517 518
  if (dynamic_cast<CpuSparseMatrix*>(value.get()) ||
      dynamic_cast<GpuSparseMatrix*>(value.get())) {
    outputG.multiBinaryLabelCrossEntropyBp(output, *value);
Z
zhangjinchao01 已提交
519
  } else {
H
Haonan 已提交
520
    outputG.binaryLabelCrossEntropyBp(output, *value);
Z
zhangjinchao01 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
  }
}

//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER(huber, HuberTwoClass);

bool HuberTwoClass::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  CostLayer::init(layerMap, parameterMap);
  if (useGpu_) {
    tmpCpuInput_.reserve(inputLayers_.size());
    for (size_t i = 0; i < inputLayers_.size(); i++) {
      tmpCpuInput_.push_back(Argument());
    }
  }
  return true;
}

541
void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
Z
zhangjinchao01 已提交
542 543
  if (useGpu_) {
    for (size_t i = 0; i < inputLayers_.size(); i++) {
544 545
      tmpCpuInput_[i].resizeAndCopyFrom(
          getInput(i), false, HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
546
    }
547
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
Z
zhangjinchao01 已提交
548 549 550 551
  }
  forwardImpIn(output, label, cost);
}

552 553
void HuberTwoClass::forwardImpIn(Matrix& output,
                                 Argument& label,
Z
zhangjinchao01 已提交
554 555 556 557 558 559 560
                                 Matrix& target) {
  size_t numSamples = target.getHeight();
  CHECK_EQ((*label.ids).getSize(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(output.getWidth(), (size_t)1);
  CHECK_EQ(target.getWidth(), (size_t)1);

561
  real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData();
Z
zhangjinchao01 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575
  int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData();
  std::vector<real> cost(numSamples);
  for (size_t i = 0; i < numSamples; ++i) {
    int y = 2 * lbl[i] - 1;
    if (out[i] * y < -1)
      cost[i] = -4 * out[i] * y;
    else if (out[i] * y < 1)
      cost[i] = (1 - out[i] * y) * (1 - out[i] * y);
    else
      cost[i] = 0;
  }
  target.copyFrom(cost.data(), numSamples);
}

576 577 578
void HuberTwoClass::backwardImp(Matrix& outputValue,
                                Argument& label,
                                Matrix& outputGrad) {
Z
zhangjinchao01 已提交
579
  if (useGpu_) {
580 581
    backwardImpIn(
        *tmpCpuInput_[0].value, tmpCpuInput_[1], *tmpCpuInput_[0].grad);
Z
zhangjinchao01 已提交
582 583 584 585 586 587
    outputGrad.copyFrom(*tmpCpuInput_[0].grad);
  } else {
    backwardImpIn(outputValue, label, outputGrad);
  }
}

588 589 590
void HuberTwoClass::backwardImpIn(Matrix& output,
                                  Argument& label,
                                  Matrix& outputG) {
Z
zhangjinchao01 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603
  size_t numSamples = output.getHeight();
  real* out = output.getData();
  real* grad = outputG.getData();
  int* lbl = (*label.ids).getData();
  for (size_t i = 0; i < numSamples; ++i) {
    int y = 2 * lbl[i] - 1;
    if (y * out[i] < -1)
      grad[i] += -4 * y;
    else if (y * out[i] < 1)
      grad[i] += -2 * (1 - y * out[i]) * y;
  }
}

X
xuwei06 已提交
604 605 606 607 608 609
/**
 * This cost layer compute the sum of its input as loss.
 * \f[
 * o(i) = \sum_{j=1}^D y_{ij}
 * \f]
 */
X
xuwei06 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
class SumCostLayer : public Layer {
public:
  explicit SumCostLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) {
    bool ret = Layer::init(layerMap, parameterMap);
    if (!ret) return ret;
    CHECK_EQ(inputLayers_.size(), 1UL);
    return true;
  }

  virtual void forward(PassType passType) {
    Layer::forward(passType);
    const MatrixPtr& input = getInputValue(0);

    /* malloc memory for the output_ if necessary */
    int batchSize = input->getHeight();
    int size = 1;
    resizeOutput(batchSize, size);
629
    output_.value->sumRows(*input, /* scaleSum= */ 1, /* scaleDest= */ 0);
X
xuwei06 已提交
630 631 632 633 634 635 636 637 638
  }

  virtual void backward(const UpdateCallback& callback = nullptr) {
    getInputGrad(0)->add((real)1);
  }
};

REGISTER_LAYER(sum_cost, SumCostLayer);

Z
zhangjinchao01 已提交
639
}  // namespace paddle