layer.py 16.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74 75
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
Q
qiaolongfei 已提交
76
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
77
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
78

L
Luo Tao 已提交
79
import activation
Q
qiaolongfei 已提交
80
import data_type
Q
qiaolongfei 已提交
81

Q
qiaolongfei 已提交
82
__all__ = [
L
Luo Tao 已提交
83 84 85 86 87 88 89 90
    'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
    'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
    'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
    'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
    'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
    'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
    'pad', 'classification_cost', 'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost', 'regression_cost',
L
Luo Tao 已提交
91
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
L
Luo Tao 已提交
92
    'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
93
    'hsigmoid', 'eos', 'memory', 'embedding', 'recurrent_group'
Q
qiaolongfei 已提交
94 95
]

D
dangqingqing 已提交
96 97 98 99 100 101 102
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
103

Q
qiaolongfei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
119
class Layer(object):
120
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
121
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
122
        self.name = name
Q
qiaolongfei 已提交
123
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
124 125 126 127 128 129

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
130 131
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
132
                              collections.Sequence):
Q
qiaolongfei 已提交
133
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
134 135
                    context=context)
            else:
Q
qiaolongfei 已提交
136 137 138
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
139

140 141
        if self.name is None:
            return self.to_proto_impl(**kwargs)
142
        elif isinstance(self, MemoryV2):
Q
qiaolongfei 已提交
143 144 145 146
            name = self.name + "#__memory__"
            if name not in context:
                context[name] = self.to_proto_impl(**kwargs)
            return context[name]
Q
qiaolongfei 已提交
147

Q
qiaolongfei 已提交
148 149
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
150 151 152 153 154 155
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


L
Luo Tao 已提交
156 157 158
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
159 160 161
    else:
        wrapper = None

Q
qiaolongfei 已提交
162
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
163
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
164 165 166
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
167 168
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
169 170 171 172 173

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
174
            name = kwargs.get('name', None)
175
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
176 177 178 179 180 181 182 183 184 185 186
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
187
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
188

Q
qiaolongfei 已提交
189
    return V2LayerImpl
Q
qiaolongfei 已提交
190 191


Q
qiaolongfei 已提交
192 193 194 195 196 197 198
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
199
    def __init__(self, name, type, **kwargs):
200
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
201

Q
qiaolongfei 已提交
202
        self.type = type
Q
qiaolongfei 已提交
203 204
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
205 206 207 208 209

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
210
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
211 212
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
213 214
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
215 216 217
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
218 219 220 221
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234

        parent_names = ['boot_layer']
        parent_layers = dict()
        other_kwargs = dict()
        for pname in parent_names:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]

        for key in kwargs.keys():
            if key not in parent_names:
                other_kwargs[key] = kwargs[key]
        super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
        self.__kwargs__ = other_kwargs
Q
qiaolongfei 已提交
235 236 237 238 239 240 241

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
242

Q
qiaolongfei 已提交
243 244 245
        return conf_helps.memory(name=self.name, size=self.size, **args)


246
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
247 248 249 250 251
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

252 253 254 255 256 257 258 259 260 261
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
class StaticInputV2(Layer):
    def __init__(self, **kwargs):
        self.__parent_names__ = ['input']
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs
        super(StaticInputV2, self).__init__(parent_layers=parent_layers)

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.StaticInput(**args)


285 286
class RecurrentGroupV2(Layer):
    def __init__(self, name, **kwargs):
Q
qiaolongfei 已提交
287
        self.__parent_names__ = ['input', 'boot_layer']
288 289 290 291 292 293 294 295 296 297 298 299 300
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs

        super(RecurrentGroupV2, self).__init__(
            name=name, parent_layers=parent_layers)

Q
qiaolongfei 已提交
301 302 303
    wrapper = wrap_name_default(name_prefix='recurrent_group')
    __init__ = wrapper(__init__)

304
    def to_proto_impl(self, **kwargs):
Q
qiaolongfei 已提交
305
        def in_args_converter(*in_args):
306 307 308 309 310 311 312 313 314 315 316 317 318
            if not isinstance(in_args, collections.Sequence):
                in_args = [in_args]
            return [LayerOutputV2(input) for input in in_args]

        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.recurrent_group(
            name=self.name, in_args_converter=in_args_converter, **args)


319 320 321 322 323 324 325 326 327 328
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
329
        pass
330 331 332 333 334 335 336 337 338 339

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
340
        self.__inputs__ = []
341
        if input is not None:
D
dangqingqing 已提交
342
            self.__inputs__ = input
343

D
dangqingqing 已提交
344 345
        other_kwargs = dict()
        other_kwargs['name'] = name
346 347 348 349 350
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
351 352
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
353 354 355 356
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
357
            self.__inputs__.append(other)
358 359 360 361 362
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
363
        assert len(self.__inputs__) == 0
364 365 366 367 368 369 370 371 372 373 374
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
375
        return getattr(conf_helps, self.__method_name__)(**args)
376 377 378


@wrap_name_default("mixed")
D
dangqingqing 已提交
379
@wrap_act_default(act=activation.Linear())
380 381 382 383 384 385 386 387 388 389 390
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
391
LayerV2 = Layer
Q
qiaolongfei 已提交
392
data = DataLayerV2
L
Luo Tao 已提交
393 394
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
395
recurrent_group = RecurrentGroupV2
Q
qiaolongfei 已提交
396
memory = MemoryV2
Q
qiaolongfei 已提交
397

L
Luo Tao 已提交
398 399 400 401
layer_list = [
    # [V2LayerImpl, V1_method_name, parent_names]
    # fully connected layers
    ['fc', 'fc_layer', ['input']],
402
    ['embedding', 'embedding_layer', ['input']],
L
Luo Tao 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
    # conv layers
    ['conv_shift', 'conv_shift_layer', ['a', 'b']],
    ['img_conv', 'img_conv_layer', ['input']],
    # image pooling layers
    ['img_pool', 'img_pool_layer', ['input']],
    ['spp', 'spp_layer', ['input']],
    ['maxout', 'maxout_layer', ['input']],
    # norm layers
    ['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
    ['batch_norm', 'batch_norm_layer', ['input']],
    ['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
    # recurrent layers
    ['recurrent', 'recurrent_layer', ['input']],
    ['lstmemory', 'lstmemory', ['input']],
    ['grumemory', 'grumemory', ['input']],
    # aggregate layers
    ['pool', 'pooling_layer', ['input']],
    ['last_seq', 'last_seq', ['input']],
    ['first_seq', 'first_seq', ['input']],
    ['concat', 'concat_layer', ['input']],
    ['seq_concat', 'seq_concat_layer', ['a', 'b']],
    # reshaping layers
    ['block_expand', 'block_expand_layer', ['input']],
    ['expand', 'expand_layer', ['input', 'expand_as']],
    ['repeat', 'repeat_layer', ['input']],
    ['rotate', 'rotate_layer', ['input']],
    ['seq_reshape', 'seq_reshape_layer', ['input']],
    # math layers
    ['addto', 'addto_layer', ['input']],
    ['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
    ['interpolation', 'interpolation_layer', ['input', 'weight']],
    ['bilinear_interp', 'bilinear_interp_layer', ['input']],
    ['power', 'power_layer', ['input', 'weight']],
    ['scaling', 'scaling_layer', ['input', 'weight']],
    ['slope_intercept', 'slope_intercept_layer', ['input']],
    ['tensor', 'tensor_layer', ['a', 'b']],
    ['cos_sim', 'cos_sim', ['a', 'b']],
    ['trans', 'trans_layer', ['input']],
    # sampling layers
    ['max_id', 'maxid_layer', ['input']],
    ['sampling_id', 'sampling_id_layer', ['input']],
    # slicing and joining layers
    ['pad', 'pad_layer', ['input']],
    # cost layers
    [
        'classification_cost', 'classification_cost',
        ['input', 'label', 'weight']
    ],
    ['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
    ['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
    [
        'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
        ['input', 'label']
    ],
    [
        'multi_binary_label_cross_entropy_cost',
        'multi_binary_label_cross_entropy', ['input', 'label']
    ],
    ['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
    ['lambda_cost', 'lambda_cost', ['input', 'score']],
    ['sum_cost', 'sum_cost', ['input']],
    ['huber_cost', 'huber_cost', ['input', 'label']],
    ['crf', 'crf_layer', ['input', 'label']],
    ['crf_decoding', 'crf_decoding_layer', ['input']],
    ['ctc', 'ctc_layer', ['input', 'label']],
    ['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
    ['nce', 'nce_layer', ['input', 'label']],
    ['hsigmoid', 'hsigmoid', ['input', 'label']],
    # check layers
Q
qiaolongfei 已提交
472 473
    ['eos', 'eos_layer', ['input']],
    ['gru_step_layer', 'gru_step_layer', ['input', 'output_mem']]
L
Luo Tao 已提交
474 475 476
]
for l in layer_list:
    globals()[l[0]] = __convert_to_v2__(l[1], l[2])
Q
qiaolongfei 已提交
477

478
# convert projection
D
dangqingqing 已提交
479
for prj in __projection_names__:
L
Luo Tao 已提交
480 481
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
482 483 484 485 486 487 488 489

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
490 491
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)