pool_with_index_op.cc 9.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/pool_with_index_op.h"

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20 21
inline int OutputSizeMaxPool(int input_size, int filter_size, int padding,
                             int stride) {
C
chengduoZH 已提交
22 23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
fix doc  
chengduoZH 已提交
31
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
32 33 34 35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "X(Input) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Out(Output) of Pooling should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
37
                   "Mask(Output) of Pooling should not be null.");
C
chengduoZH 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
                   "Pooling intput should be 4-D or 5-D");

    if (ctx->Attrs().Get<bool>("globalPooling")) {
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
      for (size_t i = 0; i < ksize.size(); ++i)
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
55
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
56
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
57
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
58
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
59
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(OutputSizeMaxPool(in_x_dims[i + 2], ksize[i],
                                               paddings[i], strides[i]));
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
C
fix doc  
chengduoZH 已提交
76 77
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
78 79 80
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool2dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "The input tensor of pooling operator. "
        "The format of input tensor is NCHW. Where N is batch size, C is the "
        "number of channels, H and W is the height and width of image.");
    AddOutput("Out",
              "The output tensor of pooling operator."
C
chengduoZH 已提交
97 98 99 100
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is "
              "the number of channels, H and W is the height and "
              "width of image.");
C
chengduoZH 已提交
101 102
    AddOutput("Mask",
              "The Mask tensor of pooling operator."
C
chengduoZH 已提交
103 104 105 106
              "The format of output tensor is also NCHW."
              "Where N is batch size, C is the number of channels, H and W "
              "is the height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
107 108

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
109
        "ksize",
C
chengduoZH 已提交
110
        "The pooling size(height, width) of pooling operator."
C
chengduoZH 已提交
111
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
112 113
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
114 115
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
116 117 118
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
119 120 121
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
122 123
                              "Strides(height, width) of pooling operator."
                              "Default {1,1}.")
C
chengduoZH 已提交
124 125
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
126
    AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
127 128
                              "Paddings(height, width) of pooling operator."
                              "Default {0,0}.")
C
chengduoZH 已提交
129 130
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
                              // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
131 132

    AddComment(R"DOC(
C
chengduoZH 已提交
133 134 135 136 137 138
The maxPooling2d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MaxPool3dWithIndexOpMaker(framework::OpProto *proto,
                            framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "X",
        "The input tensor of pooling operator. "
        "The format of input tensor is NCDHW. Where N is batch size, C is "
        "the number of channels, D, H and W is the depth, height and width of "
        "image.");
    AddOutput("Out",
              "The output tensor of pooling operator."
C
chengduoZH 已提交
156 157 158 159
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is "
              "the number of channels, D, H and W is the depth, height and "
              "width of image.");
C
chengduoZH 已提交
160 161
    AddOutput("Mask",
              "The Mask tensor of pooling operator."
C
chengduoZH 已提交
162 163 164 165
              "The format of output tensor is also NCDHW."
              "Where N is batch size, C is the number of channels, D, H and W "
              "is the depth, height and width of image."
              "The value in it is the index in current feature map");
C
chengduoZH 已提交
166 167

    AddAttr<std::vector<int>>(
C
chengduoZH 已提交
168
        "ksize",
C
chengduoZH 已提交
169
        "The pooling size(depth, height, width) of pooling operator."
C
chengduoZH 已提交
170
        "If globalPooling = true, ksize is ignored and need not be "
C
chengduoZH 已提交
171 172
        "specified.");  // TODO(Chengduo): Add checker. (Currently,
                        // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
173 174
    AddAttr<bool>(
        "globalPooling",
C
chengduoZH 已提交
175 176 177
        "Whether to use the globalPooling."
        "Bool constant equal to false or true."
        "Default false."
C
chengduoZH 已提交
178 179 180 181
        "If globalPooling = true, ksize is ignored and need not be specified.")
        .SetDefault(false);
    AddAttr<std::vector<int>>(
        "strides",
C
chengduoZH 已提交
182 183
        "Strides(depth, height, width) of pooling operator."
        "Default {1,1,1}.")
C
chengduoZH 已提交
184 185
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
186 187
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
188 189
        "Paddings(depth, height, width) of pooling operator."
        "Default {0,0,0}.")
C
chengduoZH 已提交
190 191
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                                 // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
192

C
chengduoZH 已提交
193
    AddComment(R"DOC(
C
chengduoZH 已提交
194 195 196 197 198 199
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
200 201 202
)DOC");
  }
};
C
chengduoZH 已提交
203

C
chengduoZH 已提交
204 205 206 207 208
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

C
chengduoZH 已提交
209 210
REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool2dWithIndexOpMaker, max_pool2d_with_index_grad,
C
chengduoZH 已提交
211 212 213
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
214
    max_pool2d_with_index,
C
chengduoZH 已提交
215 216
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
217
    max_pool2d_with_index_grad,
C
chengduoZH 已提交
218 219
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)

C
chengduoZH 已提交
220 221
REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
            ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad,
C
chengduoZH 已提交
222 223 224
            ops::MaxPoolWithIndexOpGrad);

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
225
    max_pool3d_with_index,
C
chengduoZH 已提交
226 227
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
228
    max_pool3d_with_index_grad,
C
chengduoZH 已提交
229
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUPlace, float>)