README.md 18.5 KB
Newer Older
G
Guanghua Yu 已提交
1 2
English | [简体中文](README_cn.md)

G
Guanghua Yu 已提交
3
# PP-PicoDet
G
Guanghua Yu 已提交
4

G
Guanghua Yu 已提交
5
![](../../docs/images/picedet_demo.jpeg)
G
Guanghua Yu 已提交
6 7 8 9

## News

- Released a new series of PP-PicoDet models, with greatly improved accuracy and optimized CPU prediction speed. **(2022.03.20)**
G
Guanghua Yu 已提交
10 11
## Introduction

G
Guanghua Yu 已提交
12
We developed a series of lightweight models, named `PP-PicoDet`. Because of the excellent performance, our models are very suitable for deployment on mobile or CPU. For more details, please refer to our [report on arXiv](https://arxiv.org/abs/2111.00902).
G
Guanghua Yu 已提交
13

G
Guanghua Yu 已提交
14
- 🌟 Higher mAP: the **first** object detectors that surpass mAP(0.5:0.95) **30+** within 1M parameters when the input size is 416.
G
Guanghua Yu 已提交
15
- 🚀 Faster latency: 150FPS on mobile ARM CPU.
16
- 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation.
G
Guanghua Yu 已提交
17
- 😍 Advanced algorithm: use the most advanced algorithms and offer innovation, such as ESNet, CSP-PAN, SimOTA with VFL, etc.
18

G
Guanghua Yu 已提交
19 20 21 22 23

<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

G
Guanghua Yu 已提交
24
## Benchmark
G
Guanghua Yu 已提交
25

G
Guanghua Yu 已提交
26 27
| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) | Latency<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  Download  | Config |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- |
G
Guanghua Yu 已提交
28 29 30 31 32 33 34 35 36
| PicoDet-XS |  320*320   |          23.5           |        36.1       |        -        |       -        |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_xs_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_xs_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_320_coco.yml) |
| PicoDet-XS |  416*416   |          26.2           |        39.3        |        -        |       -        |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_xs_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_xs_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_416_coco.yml) |
| PicoDet-S |  320*320   |          29.1           |        43.4        |        -       |       -       |             -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_s_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_s_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco.yml) |
| PicoDet-S |  416*416   |          32.5           |        47.6        |        -        |       -       |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_s_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_s_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco.yml) |
| PicoDet-M |  320*320   |          34.4           |        50.0        |        -        |       -       |              -              |            -             | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_m_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_m_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco.yml) |
| PicoDet-M |  416*416   |          37.5           |        53.4       |        -        |       -        |              -              |            -            | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_m_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_m_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco.yml) |
| PicoDet-L |  320*320   |          36.1           |        52.0        |        -       |       -        |              -             |            -           | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_l_320_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_l_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_320_coco.yml) |
| PicoDet-L |  416*416   |          39.4           |        55.7        |        -        |       -       |              -              |            -            | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_l_416_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_l_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco.yml) |
| PicoDet-L |  640*640   |          42.3           |        59.2        |        -        |       -        |              -              |            -           | [model](https://paddledet.bj.bcebos.com/models/picodetv2/picodet_l_640_coco.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/picodetv2/train_picodet_l_640_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco.yml) |
37

G
Guanghua Yu 已提交
38 39 40
<details open>
<summary><b>Table Notes:</b></summary>

G
Guanghua Yu 已提交
41
- <a name="latency">Latency:</a> All our models test on `Qualcomm Snapdragon 865(4xA77+4xA55)` with 4 threads by arm8 and with FP16. In the above table, test latency on [NCNN](https://github.com/Tencent/ncnn) and `Lite`->[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite).  And testing latency with code: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark).
G
Guanghua Yu 已提交
42 43 44 45
- PicoDet is trained on COCO train2017 dataset and evaluated on COCO val2017.
- PicoDet used 4 or 8 GPUs for training and all checkpoints are trained with default settings and hyperparameters.

</details>
46

G
Guanghua Yu 已提交
47 48 49 50
### Legacy Model

- Please refer to: [PicoDet 2021.10版本](./legacy_model/)

G
Guanghua Yu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#### Benchmark of Other Models

| Model     | Input size | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | Params<br><sup>(M) | FLOPS<br><sup>(G) | Latency<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |

G
Guanghua Yu 已提交
67

G
Guanghua Yu 已提交
68 69 70 71 72
## Quick Start

<details open>
<summary>Requirements:</summary>

G
Guanghua Yu 已提交
73
- PaddlePaddle >= 2.2.1
G
Guanghua Yu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

</details>

<details>
<summary>Installation</summary>

- [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md)

</details>

<details>
<summary>Training and Evaluation</summary>

- Training model on single-GPU:

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Training model on multi-GPU:


```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco.yml --eval
```

- Evaluation:

```shell
python tools/eval.py -c configs/picodet/picodet_s_320_coco.yml \
G
Guanghua Yu 已提交
109
              -o weights=https://paddledet.bj.bcebos.com/models/picodetv2/picodet_s_320_coco.pdparams
G
Guanghua Yu 已提交
110 111 112 113 114 115
```

- Infer:

```shell
python tools/infer.py -c configs/picodet/picodet_s_320_coco.yml \
G
Guanghua Yu 已提交
116
              -o weights=https://paddledet.bj.bcebos.com/models/picodetv2/picodet_s_320_coco.pdparams
G
Guanghua Yu 已提交
117 118 119 120 121 122 123
```

Detail also can refer to [Quick start guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).

</details>


G
Guanghua Yu 已提交
124 125
## Deployment

G
Guanghua Yu 已提交
126
### Export and Convert Model
G
Guanghua Yu 已提交
127 128

<details>
G
Guanghua Yu 已提交
129
<summary>1. Export model (click to expand)</summary>
G
Guanghua Yu 已提交
130 131 132 133

```shell
cd PaddleDetection
python tools/export_model.py -c configs/picodet/picodet_s_320_coco.yml \
G
Guanghua Yu 已提交
134 135
              -o weights=https://paddledet.bj.bcebos.com/models/picodetv2/picodet_s_320_coco.pdparams \
              --output_dir=inference_model
G
Guanghua Yu 已提交
136 137 138 139 140
```

</details>

<details>
G
Guanghua Yu 已提交
141
<summary>2. Convert to PaddleLite (click to expand)</summary>
G
Guanghua Yu 已提交
142

G
Guanghua Yu 已提交
143
- Install Paddlelite>=2.10:
G
Guanghua Yu 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

```shell
pip install paddlelite
```

- Convert model:

```shell
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_320_coco --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
```

</details>

<details>
G
Guanghua Yu 已提交
161
<summary>3. Convert to ONNX (click to expand)</summary>
G
Guanghua Yu 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

- Install [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 and ONNX > 1.10.1, for details, please refer to [Tutorials of Export ONNX Model](../../deploy/EXPORT_ONNX_MODEL.md)

```shell
pip install onnx
pip install paddle2onnx
```

- Convert model:

```shell
paddle2onnx --model_dir output_inference/picodet_s_320_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

- Simplify ONNX model: use onnx-simplifier to simplify onnx model.

  - Install onnx-simplifier >= 0.3.6:
  ```shell
  pip install onnx-simplifier
  ```
  - simplify onnx model:
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

</details>

G
Guanghua Yu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
- Deploy models

| Model     | Input size | ONNX  | Paddle Lite(fp32) | Paddle Lite(fp16) |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) |
| PicoDet-Shufflenetv2 1x      |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_shufflenetv2_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_shufflenetv2_1x_fp16.tar) |
| PicoDet-MobileNetv3-large 1x |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_mobilenetv3_large_1x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_mobilenetv3_large_1x_fp16.tar) |
| PicoDet-LCNet 1.5x           |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_lcnet_1_5x_416_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_lcnet_1_5x_fp16.tar) |


G
Guanghua Yu 已提交
209 210 211 212
### Deploy

- PaddleInference demo [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [PaddleLite C++ demo](../../deploy/lite)
G
Guanghua Yu 已提交
213 214
- [NCNN C++/Python demo](../../deploy/third_engine/demo_ncnn)
- [MNN C++/Python demo](../../deploy/third_engine/demo_mnn)
G
Guanghua Yu 已提交
215
- [OpenVINO C++ demo](../../deploy/third_engine/demo_openvino)
L
lilithzhou 已提交
216 217
- [Android demo(NCNN)](https://github.com/JiweiMaster/PP-PicoDet-Android-Demo)(Thank @[Jewel](https://github.com/JiweiMaster) for his contribution to PaddleDetection)
- [Android demo(Paddle Lite)](https://github.com/marsplus-wjh/Picodet-PaddleLite-AndroidDemo)(Thank @[JiaHui-Wang](https://github.com/marsplus-wjh) for his contribution to PaddleDetection)
G
Guanghua Yu 已提交
218 219


G
Guanghua Yu 已提交
220
Android demo visualization:
G
Guanghua Yu 已提交
221 222 223 224
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>

G
Guanghua Yu 已提交
225

G
Guanghua Yu 已提交
226
## Quantization
G
Guanghua Yu 已提交
227

G
Guanghua Yu 已提交
228 229 230
<details open>
<summary>Requirements:</summary>

G
Guanghua Yu 已提交
231 232
- PaddlePaddle >= 2.2.2
- PaddleSlim >= 2.2.1
G
Guanghua Yu 已提交
233 234 235 236

**Install:**

```shell
G
Guanghua Yu 已提交
237
pip install paddleslim==2.2.1
G
Guanghua Yu 已提交
238 239 240 241
```

</details>

G
Guanghua Yu 已提交
242
<details>
G
Guanghua Yu 已提交
243
<summary>Quant aware (click to expand)</summary>
G
Guanghua Yu 已提交
244 245 246 247 248 249 250 251

Configure the quant config and start training:

```shell
python tools/train.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/quant/picodet_s_quant.yml --eval
```

G
Guanghua Yu 已提交
252 253
- More detail can refer to [slim document](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)

G
Guanghua Yu 已提交
254 255 256
</details>

<details>
G
Guanghua Yu 已提交
257
<summary>Post quant (click to expand)</summary>
G
Guanghua Yu 已提交
258 259 260 261

Configure the post quant config and start calibrate model:

```shell
G
Guanghua Yu 已提交
262 263
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco.yml \
          --slim_config configs/slim/post_quant/picodet_s_ptq.yml
G
Guanghua Yu 已提交
264 265
```

G
Guanghua Yu 已提交
266
- Notes: Now the accuracy of post quant is abnormal and this problem is being solved.
G
Guanghua Yu 已提交
267

G
Guanghua Yu 已提交
268
</details>
G
Guanghua Yu 已提交
269

M
minghaoBD 已提交
270 271 272 273 274
## Unstructured Pruning

<details open>
<summary>Toturial:</summary>

G
Guanghua Yu 已提交
275
Please refer this [documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/pruner/README.md) for details such as requirements, training and deployment.
M
minghaoBD 已提交
276 277 278

</details>

G
Guanghua Yu 已提交
279 280 281 282
## Application

- **Pedestrian detection:** model zoo of `PicoDet-S-Pedestrian` please refer to [PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)

littletomatodonkey's avatar
littletomatodonkey 已提交
283 284
- **Mainbody detection:** model zoo of `PicoDet-L-Mainbody` please refer to [mainbody detection](./application/mainbody_detection/README.md)

G
Guanghua Yu 已提交
285 286 287 288 289 290 291 292 293
## FAQ

<details>
<summary>Out of memory error.</summary>

Please reduce the `batch_size` of `TrainReader` in config.

</details>

G
Guanghua Yu 已提交
294 295 296 297 298
<details>
<summary>How to transfer learning.</summary>

Please reset `pretrain_weights` in config, which trained on coco. Such as:
```yaml
G
Guanghua Yu 已提交
299
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodetv2/picodet_l_640_coco.pdparams
G
Guanghua Yu 已提交
300 301 302 303 304 305 306 307 308 309 310 311
```

</details>

<details>
<summary>The transpose operator is time-consuming on some hardware.</summary>

Please use `PicoDet-LCNet` model, which has fewer `transpose` operators.

</details>


W
Wenyu 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
<details>
<summary>How to count model parameters.</summary>

You can insert below code at [here](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) to count learnable parameters.

```python
params = sum([
    p.numel() for n, p in self.model. named_parameters()
    if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
```

</details>

G
Guanghua Yu 已提交
327 328
## Cite PP-PicoDet
If you use PicoDet in your research, please cite our work by using the following BibTeX entry:
G
Guanghua Yu 已提交
329
```
G
Guanghua Yu 已提交
330 331 332 333 334 335 336 337
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
G
Guanghua Yu 已提交
338 339

```