vehicle_plateutils.py 18.3 KB
Newer Older
Z
zhiboniu 已提交
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Z
zhiboniu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys
import platform
import cv2
import numpy as np
import paddle
from PIL import Image, ImageDraw, ImageFont
import math
from paddle import inference
import time
import ast


Z
zhiboniu 已提交
29
def create_predictor(args, cfg, mode):
Z
zhiboniu 已提交
30
    if mode == "det":
Z
zhiboniu 已提交
31
        model_dir = cfg['det_model_dir']
Z
zhiboniu 已提交
32
    else:
Z
zhiboniu 已提交
33
        model_dir = cfg['rec_model_dir']
Z
zhiboniu 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

    if model_dir is None:
        print("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)

    model_file_path = model_dir + "/inference.pdmodel"
    params_file_path = model_dir + "/inference.pdiparams"
    if not os.path.exists(model_file_path):
        raise ValueError("not find model file path {}".format(model_file_path))
    if not os.path.exists(params_file_path):
        raise ValueError("not find params file path {}".format(
            params_file_path))

    config = inference.Config(model_file_path, params_file_path)

Z
zhiboniu 已提交
49 50
    batch_size = 1

Z
zhiboniu 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
    if args.device == "GPU":
        gpu_id = get_infer_gpuid()
        if gpu_id is None:
            print(
                "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
            )
        config.enable_use_gpu(500, 0)

        precision_map = {
            'trt_int8': inference.PrecisionType.Int8,
            'trt_fp32': inference.PrecisionType.Float32,
            'trt_fp16': inference.PrecisionType.Half
        }
64
        min_subgraph_size = 15
Z
zhiboniu 已提交
65 66 67 68 69
        if args.run_mode in precision_map.keys():
            config.enable_tensorrt_engine(
                workspace_size=(1 << 25) * batch_size,
                max_batch_size=batch_size,
                min_subgraph_size=min_subgraph_size,
70
                precision_mode=precision_map[args.run_mode])
Z
zhiboniu 已提交
71
            use_dynamic_shape = True
Z
zhiboniu 已提交
72

Z
zhiboniu 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            if mode == "det":
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
                    "x": [1, 3, 1536, 1536],
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
                imgH = int(cfg['rec_image_shape'][-2])
                min_input_shape = {"x": [1, 3, imgH, 10]}
                max_input_shape = {"x": [batch_size, 3, imgH, 2304]}
                opt_input_shape = {"x": [batch_size, 3, imgH, 320]}
Z
zhiboniu 已提交
142
                config.exp_disable_tensorrt_ops(["transpose2"])
Z
zhiboniu 已提交
143 144 145 146 147 148 149 150 151
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
                max_input_shape = {"x": [batch_size, 3, 48, 1024]}
                opt_input_shape = {"x": [batch_size, 3, 48, 320]}
            else:
                use_dynamic_shape = False
            if use_dynamic_shape:
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
Z
zhiboniu 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    else:
        config.disable_gpu()
        if hasattr(args, "cpu_threads"):
            config.set_cpu_math_library_num_threads(args.cpu_threads)
        else:
            # default cpu threads as 10
            config.set_cpu_math_library_num_threads(10)
        if args.enable_mkldnn:
            # cache 10 different shapes for mkldnn to avoid memory leak
            config.set_mkldnn_cache_capacity(10)
            config.enable_mkldnn()
            if args.run_mode == "fp16":
                config.enable_mkldnn_bfloat16()
    # enable memory optim
    config.enable_memory_optim()
    config.disable_glog_info()
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
    config.delete_pass("matmul_transpose_reshape_fuse_pass")
    if mode == 'table':
        config.delete_pass("fc_fuse_pass")  # not supported for table
    config.switch_use_feed_fetch_ops(False)
    config.switch_ir_optim(True)

    # create predictor
    predictor = inference.create_predictor(config)
    input_names = predictor.get_input_names()
    for name in input_names:
        input_tensor = predictor.get_input_handle(name)
Z
zhiboniu 已提交
181
    output_tensors = get_output_tensors(cfg, mode, predictor)
Z
zhiboniu 已提交
182 183 184
    return predictor, input_tensor, output_tensors, config


Z
zhiboniu 已提交
185
def get_output_tensors(cfg, mode, predictor):
Z
zhiboniu 已提交
186 187
    output_names = predictor.get_output_names()
    output_tensors = []
Z
zhiboniu 已提交
188 189 190
    output_name = 'softmax_0.tmp_0'
    if output_name in output_names:
        return [predictor.get_output_handle(output_name)]
Z
zhiboniu 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    else:
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
    return output_tensors


def get_infer_gpuid():
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


def draw_text_det_res(dt_boxes, img_path):
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
    return src_im


def resize_img(img, input_size=600):
    """
    resize img and limit the longest side of the image to input_size
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img


def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
             font_path="./doc/fonts/simfang.ttf"):
    """
    Visualize the results of OCR detection and recognition
    args:
        image(Image|array): RGB image
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
        font_path: the path of font which is used to draw text
    return(array):
        the visualized img
    """
    if scores is None:
        scores = [1] * len(boxes)
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
            continue
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    if txts is not None:
        img = np.array(resize_img(image, input_size=600))
        txt_img = text_visual(
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
        return img
    return image


def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))

    import random

    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
        draw_left.polygon(box, fill=color)
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
    return np.array(img_show)


def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
        font_path: the path of font which is used to draw text
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
        return blank_img, draw_txt

    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")

    gap = font_size + 5
    txt_img_list = []
    count, index = 1, 0
    for idx, txt in enumerate(texts):
        index += 1
        if scores[idx] < threshold or math.isnan(scores[idx]):
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
            count += 1
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
        # whether add new blank img or not
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
        count += 1
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)


def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


if __name__ == '__main__':
    pass