optimizer.py 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import math
20 21 22 23 24 25
import logging

from paddle import fluid

import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
26 27
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
from paddle.fluid.layers.ops import cos
28 29 30 31 32 33 34 35 36 37 38 39 40 41

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

logger = logging.getLogger(__name__)


@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
F
FDInSky 已提交
42
        gamma (float | list): decay factor
43 44 45
        milestones (list): steps at which to decay learning rate
    """

F
FDInSky 已提交
46 47
    def __init__(self, gamma=[0.1, 0.1], milestones=[60000, 80000],
                 values=None):
48
        super(PiecewiseDecay, self).__init__()
F
FDInSky 已提交
49 50 51 52 53 54
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
55 56 57 58 59 60 61 62
        self.milestones = milestones
        self.values = values

    def __call__(self, base_lr=None, learning_rate=None):
        if self.values is not None:
            return fluid.layers.piecewise_decay(self.milestones, self.values)
        assert base_lr is not None, "either base LR or values should be provided"
        values = [base_lr]
F
FDInSky 已提交
63 64 65
        for g in self.gamma:
            new_lr = base_lr * g
            values.append(new_lr)
66 67 68
        return fluid.layers.piecewise_decay(self.milestones, values)


F
FDInSky 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
@serializable
class PolynomialDecay(object):
    """
    Applies polynomial decay to the initial learning rate.
    Args:
        max_iter (int) – The learning rate decay steps. 
        end_lr(float) – End learning rate.
        power (float) – Polynomial attenuation coefficient
    """

    def __init__(self, max_iter=180000, end_lr=0.0001, power=1.0):
        super(PolynomialDecay).__init__()
        self.max_iter = max_iter
        self.end_lr = end_lr
        self.power = power

    def __call__(self, base_lr=None, learning_rate=None):
        assert base_lr is not None, "either base LR or values should be provided"
        lr = fluid.layers.polynomial_decay(base_lr, self.max_iter, self.end_lr,
                                           self.power)
        return lr


@serializable
class ExponentialDecay(object):
    """
    Applies exponential decay to the learning rate.
    Args:
        max_iter (int) – The learning rate decay steps. 
        decay_rate (float) – The learning rate decay rate. 
    """

    def __init__(self, max_iter, decay_rate):
        super(ExponentialDecay).__init__()
        self.max_iter = max_iter
        self.decay_rate = decay_rate

    def __call__(self, base_lr=None, learning_rate=None):
        assert base_lr is not None, "either base LR or values should be provided"
        lr = fluid.layers.exponential_decay(base_lr, self.max_iter,
                                            self.decay_rate)
        return lr


113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_iters (float): max iterations for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iter is much larger than the warmup iter
    """

    def __init__(self, max_iters=180000):
        self.max_iters = max_iters

    def __call__(self, base_lr=None, learning_rate=None):
        assert base_lr is not None, "either base LR or values should be provided"
        lr = fluid.layers.cosine_decay(base_lr, 1, self.max_iters)
F
FDInSky 已提交
130
        return lr
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


@serializable
class CosineDecayWithSkip(object):
    """
    Cosine decay, with explicit support for warm up

    Args:
        total_steps (int): total steps over which to apply the decay
        skip_steps (int): skip some steps at the beginning, e.g., warm up
    """

    def __init__(self, total_steps, skip_steps=None):
        super(CosineDecayWithSkip, self).__init__()
        assert (not skip_steps or skip_steps > 0), \
            "skip steps must be greater than zero"
        assert total_steps > 0, "total step must be greater than zero"
        assert (not skip_steps or skip_steps < total_steps), \
            "skip steps must be smaller than total steps"
        self.total_steps = total_steps
        self.skip_steps = skip_steps

    def __call__(self, base_lr=None, learning_rate=None):
        steps = _decay_step_counter()
        total = self.total_steps
        if self.skip_steps is not None:
            total -= self.skip_steps

        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=base_lr,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        def decay():
            cos_lr = base_lr * .5 * (cos(steps * (math.pi / total)) + 1)
            fluid.layers.tensor.assign(input=cos_lr, output=lr)

        if self.skip_steps is None:
            decay()
        else:
            skipped = steps >= self.skip_steps
            fluid.layers.cond(skipped, decay)
175 176 177
        return lr


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

    def __call__(self, base_lr, learning_rate):
        start_lr = base_lr * self.start_factor

        return fluid.layers.linear_lr_warmup(
            learning_rate=learning_rate,
            warmup_steps=self.steps,
            start_lr=start_lr,
            end_lr=base_lr)


@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self):
        lr = None
        for sched in self.schedulers:
            lr = sched(self.base_lr, lr)
        return lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles

    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
240
                 clip_grad_by_norm=None,
241 242 243 244
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
245
        self.clip_grad_by_norm = clip_grad_by_norm
246 247 248 249
        self.regularizer = regularizer
        self.optimizer = optimizer

    def __call__(self, learning_rate):
250 251 252 253
        if self.clip_grad_by_norm is not None:
            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=self.clip_grad_by_norm))
W
wangguanzhong 已提交
254 255 256 257 258 259
        if self.regularizer:
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None
260 261 262 263 264 265 266
        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
        op = getattr(optimizer, optim_type)
        return op(learning_rate=learning_rate,
                  regularization=regularization,
                  **optim_args)