chip_box_utils.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np


def bbox_area(boxes):
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


def intersection_over_box(chips, boxes):
    """
    intersection area over box area
    :param chips:  C
    :param boxes:  B
    :return: iob, CxB
    """
    M = chips.shape[0]
    N = boxes.shape[0]
    if M * N == 0:
        return np.zeros([M, N], dtype='float32')

    box_area = bbox_area(boxes)  # B

    inter_x2y2 = np.minimum(np.expand_dims(chips, 1)[:, :, 2:], boxes[:, 2:])  # CxBX2
    inter_x1y1 = np.maximum(np.expand_dims(chips, 1)[:, :, :2], boxes[:, :2])  # CxBx2
    inter_wh = inter_x2y2 - inter_x1y1
    inter_wh = np.clip(inter_wh, a_min=0, a_max=None)
    inter_area = inter_wh[:, :, 0] * inter_wh[:, :, 1]  # CxB

    iob = inter_area / np.expand_dims(box_area, 0)
    return iob


def clip_boxes(boxes, im_shape):
    """
    Clip boxes to image boundaries.
    :param boxes: [N, 4]
    :param im_shape: tuple of 2, [h, w]
    :return: [N, 4]
    """
    # x1 >= 0
    boxes[:, 0] = np.clip(boxes[:, 0], 0, im_shape[1] - 1)
    # y1 >= 0
    boxes[:, 1] = np.clip(boxes[:, 1], 0, im_shape[0] - 1)
    # x2 < im_shape[1]
    boxes[:, 2] = np.clip(boxes[:, 2], 1, im_shape[1])
    # y2 < im_shape[0]
    boxes[:, 3] = np.clip(boxes[:, 3], 1, im_shape[0])
    return boxes


def transform_chip_box(gt_bbox: 'Gx4', boxes_idx: 'B', chip: '4'):
    boxes_idx = np.array(boxes_idx)
    cur_gt_bbox = gt_bbox[boxes_idx].copy()  # Bx4
    x1, y1, x2, y2 = chip
    cur_gt_bbox[:, 0] -= x1
    cur_gt_bbox[:, 1] -= y1
    cur_gt_bbox[:, 2] -= x1
    cur_gt_bbox[:, 3] -= y1
    h = y2 - y1
    w = x2 - x1
    cur_gt_bbox = clip_boxes(cur_gt_bbox, (h, w))
    ws = (cur_gt_bbox[:, 2] - cur_gt_bbox[:, 0]).astype(np.int32)
    hs = (cur_gt_bbox[:, 3] - cur_gt_bbox[:, 1]).astype(np.int32)
    valid_idx = (ws >= 2) & (hs >= 2)
    return cur_gt_bbox[valid_idx], boxes_idx[valid_idx]


def find_chips_to_cover_overlaped_boxes(iob, overlap_threshold):
    chip_ids, box_ids = np.nonzero(iob >= overlap_threshold)
    chip_id2overlap_box_num = np.bincount(chip_ids)  # 1d array
    chip_id2overlap_box_num = np.pad(chip_id2overlap_box_num, (0, len(iob) - len(chip_id2overlap_box_num)),
                                     constant_values=0)

    chosen_chip_ids = []
    while len(box_ids) > 0:
        value_counts = np.bincount(chip_ids)  # 1d array
        max_count_chip_id = np.argmax(value_counts)
        assert max_count_chip_id not in chosen_chip_ids
        chosen_chip_ids.append(max_count_chip_id)

        box_ids_in_cur_chip = box_ids[chip_ids == max_count_chip_id]
        ids_not_in_cur_boxes_mask = np.logical_not(np.isin(box_ids, box_ids_in_cur_chip))
        chip_ids = chip_ids[ids_not_in_cur_boxes_mask]
        box_ids = box_ids[ids_not_in_cur_boxes_mask]
    return chosen_chip_ids, chip_id2overlap_box_num


def transform_chip_boxes2image_boxes(chip_boxes, chip, img_h, img_w):
    chip_boxes = np.array(sorted(chip_boxes, key=lambda item: -item[1]))
    xmin, ymin, _, _ = chip
    # Transform to origin image loc
    chip_boxes[:, 2] += xmin
    chip_boxes[:, 4] += xmin
    chip_boxes[:, 3] += ymin
    chip_boxes[:, 5] += ymin
    chip_boxes = clip_boxes(chip_boxes, (img_h, img_w))
    return chip_boxes


def nms(dets, thresh):
    """Apply classic DPM-style greedy NMS."""
    if dets.shape[0] == 0:
        return dets[[], :]
    scores = dets[:, 1]
    x1 = dets[:, 2]
    y1 = dets[:, 3]
    x2 = dets[:, 4]
    y2 = dets[:, 5]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    ndets = dets.shape[0]
    suppressed = np.zeros((ndets), dtype=np.int)

    # nominal indices
    # _i, _j
    # sorted indices
    # i, j
    # temp variables for box i's (the box currently under consideration)
    # ix1, iy1, ix2, iy2, iarea

    # variables for computing overlap with box j (lower scoring box)
    # xx1, yy1, xx2, yy2
    # w, h
    # inter, ovr

    for _i in range(ndets):
        i = order[_i]
        if suppressed[i] == 1:
            continue
        ix1 = x1[i]
        iy1 = y1[i]
        ix2 = x2[i]
        iy2 = y2[i]
        iarea = areas[i]
        for _j in range(_i + 1, ndets):
            j = order[_j]
            if suppressed[j] == 1:
                continue
            xx1 = max(ix1, x1[j])
            yy1 = max(iy1, y1[j])
            xx2 = min(ix2, x2[j])
            yy2 = min(iy2, y2[j])
            w = max(0.0, xx2 - xx1 + 1)
            h = max(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (iarea + areas[j] - inter)
            if ovr >= thresh:
                suppressed[j] = 1
    keep = np.where(suppressed == 0)[0]
    dets = dets[keep, :]
    return dets