callbacks.py 12.3 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
20
import sys
K
Kaipeng Deng 已提交
21
import datetime
22
import six
23 24
import copy
import json
K
Kaipeng Deng 已提交
25

26
import paddle
W
wangguanzhong 已提交
27
import paddle.distributed as dist
K
Kaipeng Deng 已提交
28 29

from ppdet.utils.checkpoint import save_model
30
from ppdet.metrics import get_infer_results
K
Kaipeng Deng 已提交
31 32

from ppdet.utils.logger import setup_logger
33
logger = setup_logger('ppdet.engine')
K
Kaipeng Deng 已提交
34

35
__all__ = ['Callback', 'ComposeCallback', 'LogPrinter', 'Checkpointer', 'VisualDLWriter', 'SniperProposalsGenerator']
K
Kaipeng Deng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class Callback(object):
    def __init__(self, model):
        self.model = model

    def on_step_begin(self, status):
        pass

    def on_step_end(self, status):
        pass

    def on_epoch_begin(self, status):
        pass

    def on_epoch_end(self, status):
        pass

54 55 56 57 58 59
    def on_train_begin(self, status):
        pass

    def on_train_end(self, status):
        pass

K
Kaipeng Deng 已提交
60 61 62

class ComposeCallback(object):
    def __init__(self, callbacks):
63 64 65 66
        callbacks = [c for c in list(callbacks) if c is not None]
        for c in callbacks:
            assert isinstance(
                c, Callback), "callback should be subclass of Callback"
K
Kaipeng Deng 已提交
67 68 69
        self._callbacks = callbacks

    def on_step_begin(self, status):
70 71
        for c in self._callbacks:
            c.on_step_begin(status)
K
Kaipeng Deng 已提交
72 73

    def on_step_end(self, status):
74 75
        for c in self._callbacks:
            c.on_step_end(status)
K
Kaipeng Deng 已提交
76 77

    def on_epoch_begin(self, status):
78 79
        for c in self._callbacks:
            c.on_epoch_begin(status)
K
Kaipeng Deng 已提交
80 81

    def on_epoch_end(self, status):
82 83
        for c in self._callbacks:
            c.on_epoch_end(status)
K
Kaipeng Deng 已提交
84

85 86 87 88 89 90 91 92
    def on_train_begin(self, status):
        for c in self._callbacks:
            c.on_train_begin(status)

    def on_train_end(self, status):
        for c in self._callbacks:
            c.on_train_end(status)

K
Kaipeng Deng 已提交
93 94 95 96 97 98

class LogPrinter(Callback):
    def __init__(self, model):
        super(LogPrinter, self).__init__(model)

    def on_step_end(self, status):
W
wangguanzhong 已提交
99
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
K
Kaipeng Deng 已提交
100 101
            mode = status['mode']
            if mode == 'train':
K
Kaipeng Deng 已提交
102 103 104 105 106 107 108 109
                epoch_id = status['epoch_id']
                step_id = status['step_id']
                steps_per_epoch = status['steps_per_epoch']
                training_staus = status['training_staus']
                batch_time = status['batch_time']
                data_time = status['data_time']

                epoches = self.model.cfg.epoch
K
Kaipeng Deng 已提交
110 111
                batch_size = self.model.cfg['{}Reader'.format(mode.capitalize(
                ))]['batch_size']
K
Kaipeng Deng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

                logs = training_staus.log()
                space_fmt = ':' + str(len(str(steps_per_epoch))) + 'd'
                if step_id % self.model.cfg.log_iter == 0:
                    eta_steps = (epoches - epoch_id) * steps_per_epoch - step_id
                    eta_sec = eta_steps * batch_time.global_avg
                    eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
                    ips = float(batch_size) / batch_time.avg
                    fmt = ' '.join([
                        'Epoch: [{}]',
                        '[{' + space_fmt + '}/{}]',
                        'learning_rate: {lr:.6f}',
                        '{meters}',
                        'eta: {eta}',
                        'batch_cost: {btime}',
                        'data_cost: {dtime}',
                        'ips: {ips:.4f} images/s',
                    ])
                    fmt = fmt.format(
                        epoch_id,
                        step_id,
                        steps_per_epoch,
                        lr=status['learning_rate'],
                        meters=logs,
                        eta=eta_str,
                        btime=str(batch_time),
                        dtime=str(data_time),
                        ips=ips)
                    logger.info(fmt)
K
Kaipeng Deng 已提交
141
            if mode == 'eval':
K
Kaipeng Deng 已提交
142 143 144 145 146
                step_id = status['step_id']
                if step_id % 100 == 0:
                    logger.info("Eval iter: {}".format(step_id))

    def on_epoch_end(self, status):
W
wangguanzhong 已提交
147
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
K
Kaipeng Deng 已提交
148 149
            mode = status['mode']
            if mode == 'eval':
K
Kaipeng Deng 已提交
150 151 152 153 154 155 156 157 158
                sample_num = status['sample_num']
                cost_time = status['cost_time']
                logger.info('Total sample number: {}, averge FPS: {}'.format(
                    sample_num, sample_num / cost_time))


class Checkpointer(Callback):
    def __init__(self, model):
        super(Checkpointer, self).__init__(model)
W
wangxinxin08 已提交
159
        cfg = self.model.cfg
160 161 162
        self.best_ap = 0.
        self.save_dir = os.path.join(self.model.cfg.save_dir,
                                     self.model.cfg.filename)
163 164 165 166
        if hasattr(self.model.model, 'student_model'):
            self.weight = self.model.model.student_model
        else:
            self.weight = self.model.model
K
Kaipeng Deng 已提交
167 168

    def on_epoch_end(self, status):
K
Kaipeng Deng 已提交
169 170
        # Checkpointer only performed during training
        mode = status['mode']
171 172 173
        epoch_id = status['epoch_id']
        weight = None
        save_name = None
W
wangguanzhong 已提交
174
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
175 176
            if mode == 'train':
                end_epoch = self.model.cfg.epoch
177 178 179
                if (
                        epoch_id + 1
                ) % self.model.cfg.snapshot_epoch == 0 or epoch_id == end_epoch - 1:
180 181
                    save_name = str(
                        epoch_id) if epoch_id != end_epoch - 1 else "model_final"
182
                    weight = self.weight
183 184 185 186
            elif mode == 'eval':
                if 'save_best_model' in status and status['save_best_model']:
                    for metric in self.model._metrics:
                        map_res = metric.get_results()
187 188 189 190 191 192
                        if 'bbox' in map_res:
                            key = 'bbox'
                        elif 'keypoint' in map_res:
                            key = 'keypoint'
                        else:
                            key = 'mask'
193
                        if key not in map_res:
194
                            logger.warning("Evaluation results empty, this may be due to " \
195 196 197
                                        "training iterations being too few or not " \
                                        "loading the correct weights.")
                            return
198 199 200
                        if map_res[key][0] > self.best_ap:
                            self.best_ap = map_res[key][0]
                            save_name = 'best_model'
201
                            weight = self.weight
202 203 204 205 206
                        logger.info("Best test {} ap is {:0.3f}.".format(
                            key, self.best_ap))
            if weight:
                save_model(weight, self.model.optimizer, self.save_dir,
                           save_name, epoch_id + 1)
207 208 209 210 211 212 213 214 215 216 217 218


class WiferFaceEval(Callback):
    def __init__(self, model):
        super(WiferFaceEval, self).__init__(model)

    def on_epoch_begin(self, status):
        assert self.model.mode == 'eval', \
            "WiferFaceEval can only be set during evaluation"
        for metric in self.model._metrics:
            metric.update(self.model.model)
        sys.exit()
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235


class VisualDLWriter(Callback):
    """
    Use VisualDL to log data or image
    """

    def __init__(self, model):
        super(VisualDLWriter, self).__init__(model)

        assert six.PY3, "VisualDL requires Python >= 3.5"
        try:
            from visualdl import LogWriter
        except Exception as e:
            logger.error('visualdl not found, plaese install visualdl. '
                         'for example: `pip install visualdl`.')
            raise e
M
Manuel Garcia 已提交
236 237
        self.vdl_writer = LogWriter(
            model.cfg.get('vdl_log_dir', 'vdl_log_dir/scalar'))
238 239 240 241 242 243 244
        self.vdl_loss_step = 0
        self.vdl_mAP_step = 0
        self.vdl_image_step = 0
        self.vdl_image_frame = 0

    def on_step_end(self, status):
        mode = status['mode']
W
wangguanzhong 已提交
245
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
            if mode == 'train':
                training_staus = status['training_staus']
                for loss_name, loss_value in training_staus.get().items():
                    self.vdl_writer.add_scalar(loss_name, loss_value,
                                               self.vdl_loss_step)
                    self.vdl_loss_step += 1
            elif mode == 'test':
                ori_image = status['original_image']
                result_image = status['result_image']
                self.vdl_writer.add_image(
                    "original/frame_{}".format(self.vdl_image_frame), ori_image,
                    self.vdl_image_step)
                self.vdl_writer.add_image(
                    "result/frame_{}".format(self.vdl_image_frame),
                    result_image, self.vdl_image_step)
                self.vdl_image_step += 1
                # each frame can display ten pictures at most.
                if self.vdl_image_step % 10 == 0:
                    self.vdl_image_step = 0
                    self.vdl_image_frame += 1

    def on_epoch_end(self, status):
        mode = status['mode']
W
wangguanzhong 已提交
269
        if dist.get_world_size() < 2 or dist.get_rank() == 0:
270 271 272 273 274 275 276
            if mode == 'eval':
                for metric in self.model._metrics:
                    for key, map_value in metric.get_results().items():
                        self.vdl_writer.add_scalar("{}-mAP".format(key),
                                                   map_value[0],
                                                   self.vdl_mAP_step)
                self.vdl_mAP_step += 1
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335


class SniperProposalsGenerator(Callback):
    def __init__(self, model):
        super(SniperProposalsGenerator, self).__init__(model)
        ori_dataset = self.model.dataset
        self.dataset = self._create_new_dataset(ori_dataset)
        self.loader = self.model.loader
        self.cfg = self.model.cfg
        self.infer_model = self.model.model

    def _create_new_dataset(self, ori_dataset):
        dataset = copy.deepcopy(ori_dataset)
        # init anno_cropper
        dataset.init_anno_cropper()
        # generate infer roidbs
        ori_roidbs = dataset.get_ori_roidbs()
        roidbs = dataset.anno_cropper.crop_infer_anno_records(ori_roidbs)
        # set new roidbs
        dataset.set_roidbs(roidbs)

        return dataset

    def _eval_with_loader(self, loader):
        results = []
        with paddle.no_grad():
            self.infer_model.eval()
            for step_id, data in enumerate(loader):
                outs = self.infer_model(data)
                for key in ['im_shape', 'scale_factor', 'im_id']:
                    outs[key] = data[key]
                for key, value in outs.items():
                    if hasattr(value, 'numpy'):
                        outs[key] = value.numpy()

                results.append(outs)

        return results

    def on_train_end(self, status):
        self.loader.dataset = self.dataset
        results = self._eval_with_loader(self.loader)
        results = self.dataset.anno_cropper.aggregate_chips_detections(results)
        # sniper
        proposals = []
        clsid2catid = {v: k for k, v in self.dataset.catid2clsid.items()}
        for outs in results:
            batch_res = get_infer_results(outs, clsid2catid)
            start = 0
            for i, im_id in enumerate(outs['im_id']):
                bbox_num = outs['bbox_num']
                end = start + bbox_num[i]
                bbox_res = batch_res['bbox'][start:end] \
                    if 'bbox' in batch_res else None
                if bbox_res:
                    proposals += bbox_res
        logger.info("save proposals in {}".format(self.cfg.proposals_path))
        with open(self.cfg.proposals_path, 'w') as f:
            json.dump(proposals, f)