temporal_shift_op.cu 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/temporal_shift_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

using framework::Tensor;


template <typename T>
__global__ void KeTemporalShiftFw(const T* input, T* output, const int ntchw,
D
dengkaipeng 已提交
23 24
    const int tchw, const int chw, const int hw, const int w, const int t, const int c,
    const float shift_ratio) {
25 26 27 28 29 30 31 32 33 34
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;
  for (; tid < ntchw; tid += stride) {
      int in = tid / tchw;
      int it = (tid % tchw) / chw;
      int ic = (tid % chw) / hw;
      int ih = (tid % hw) / w;
      int iw = tid % w;

D
dengkaipeng 已提交
35 36 37 38
      const int c1 = static_cast<T>(c * shift_ratio);
      const int c2 = static_cast<T>(c * 2 * shift_ratio);

      if (ic < c1) {
39
        src_it = it - 1;
D
dengkaipeng 已提交
40
      } else if (ic < c2) {
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        src_it = it + 1;
      } else {
        src_it = it;
      }
      
      if (src_it < 0 || src_it >= t) {
        output[tid] = 0;
      } else {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        output[tid] = input[src_idx];
      }
  }
}

template <typename T>
__global__ void KeTemporalShiftBw(const T* output_grad, T* input_grad, const int ntchw,
D
dengkaipeng 已提交
57 58
    const int tchw, const int chw, const int hw, const int w, const int t, const int c,
    const float shift_ratio) {
59 60 61 62 63 64 65 66 67 68
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  int src_it = 0;
  for (; tid < ntchw; tid += stride) {
      int in = tid / tchw;
      int it = (tid % tchw) / chw;
      int ic = (tid % chw) / hw;
      int ih = (tid % hw) / w;
      int iw = tid % w;

D
dengkaipeng 已提交
69 70 71 72
      const int c1 = static_cast<T>(c * shift_ratio);
      const int c2 = static_cast<T>(c * 2 * shift_ratio);

      if (ic < c1) {
73
        src_it = it - 1;
D
dengkaipeng 已提交
74
      } else if (ic < c2) {
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        src_it = it + 1;
      } else {
        src_it = it;
      }
      
      if (src_it >= 0 && src_it < t) {
        int src_idx = GetEntryIndex(in, src_it, ic, ih, iw, tchw, chw, hw, w);
        input_grad[src_idx] = output_grad[tid];
      }
  }
}

template <typename T>
class TemporalShiftOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    int t = ctx.Attr<int>("seg_num");
D
dengkaipeng 已提交
96
    float shift_ratio = ctx.Attr<float>("shift_ratio");
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

    const int nt = input->dims()[0];
    const int c = input->dims()[1];
    const int h = input->dims()[2];
    const int w = input->dims()[3];

    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;
    const int ntchw = nt * chw;

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());

    int pixelNum = nt * chw;
    int grid_dim = (pixelNum + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;

    KeTemporalShiftFw<
      T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
D
dengkaipeng 已提交
117
          input_data, output_data, ntchw, tchw, chw, hw, w, t, c, shift_ratio);
118 119 120 121 122 123 124 125 126 127
  }
};

template <typename T>
class TemporalShiftGradOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    int t = ctx.Attr<int>("seg_num");
D
dengkaipeng 已提交
128
    float shift_ratio = ctx.Attr<float>("shift_ratio");
129 130 131 132 133 134 135 136 137 138 139 140 141

    const int nt = output_grad->dims()[0];
    const int c = output_grad->dims()[1];
    const int h = output_grad->dims()[2];
    const int w = output_grad->dims()[3];

    const int hw = h * w;
    const int chw = c * hw;
    const int tchw = t * chw;
    const int ntchw = nt * chw;

    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = input_grad->mutable_data<T>({nt, c, h, w}, ctx.GetPlace());
142 143 144
    math::SetConstant<platform::CUDADeviceContext, T>()(
        ctx.template device_context<platform::CUDADeviceContext>(), input_grad,
        static_cast<T>(0));
145 146 147 148 149 150 151

    int pixelNum = nt * chw;
    int grid_dim = (pixelNum + 512 - 1) / 512;
    grid_dim = grid_dim > 8 ? 8 : grid_dim;

    KeTemporalShiftBw<
      T><<<grid_dim, 512, 0, ctx.cuda_device_context().stream()>>>(
D
dengkaipeng 已提交
152
          output_grad_data, input_grad_data, ntchw, tchw, chw, hw, w, t, c, shift_ratio);
153 154 155 156 157 158 159 160 161 162 163 164
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(temporal_shift, ops::TemporalShiftOpCUDAKernel<float>,
                        ops::TemporalShiftOpCUDAKernel<double>);
REGISTER_OP_CUDA_KERNEL(temporal_shift_grad,
                        ops::TemporalShiftGradOpCUDAKernel<float>,
                        ops::TemporalShiftGradOpCUDAKernel<double>);