sample_prob.cu 6.2 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <thrust/random.h>
#include <thrust/sort.h>
#include <iostream>
#include <vector>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sample_prob.h"
#include "paddle/fluid/operators/math/sampler.h"

namespace paddle {
namespace operators {
namespace math {

using Tensor = framework::Tensor;

template <typename T>
__device__ T gpu_adjust_prob(const T prob, const int num_samples,
                             const int num_tries) {
  if (num_samples == num_tries) {
    return prob * num_samples;
  } else {
    return -expm1(num_tries * log1p(-prob));
  }
}

class GPULogUniformSampler {
 public:
  __device__ int64_t Sample(float random, const int range,
                            const float log_range) const;
  __device__ float Probability(int64_t value, const float log_range) const;
};

__device__ int64_t GPULogUniformSampler::Sample(float random, const int range,
                                                const float log_range) const {
  // Got Log Uniform distribution from uniform distribution by
  // inverse_transform_sampling method
  const int64_t value = static_cast<int64_t>(exp(random * log_range)) - 1;
  // Mathematically, value should be <= range_, but might not be due to some
  // floating point roundoff, so we mod by range_.
  return value % range;
}

__device__ float GPULogUniformSampler::Probability(
    int64_t value, const float log_range) const {
  // Given f(x) = 1/[(x+1) * log_range_]
  // The value's  probability  is integral of f(x) from value to (value + 1)
  return (log((value + 2.0) / (value + 1.0))) / log_range;
}

template <typename T>
__global__ void SamplingCondidate(
    const size_t n, const int num_tries, const int range, const float log_range,
    const int num_true, const std::size_t num_samples,
    const int64_t* label_data, int64_t* samples_data, T* probabilities_data) {
  const int num_sampled_classes = num_true + num_samples;

  int idx = blockDim.x * blockIdx.x + threadIdx.x;
  int step_size = 0;
  GPULogUniformSampler sampler;

  for (; idx < n; idx += blockDim.x * gridDim.x) {
    int col_idx = idx % num_sampled_classes;
    int row_idx = idx / num_sampled_classes;
    if (col_idx < num_true) {
      samples_data[idx] = label_data[row_idx * num_true + col_idx];
    } else {
      samples_data[idx] = samples_data[col_idx];
    }
    probabilities_data[idx] = sampler.Probability(samples_data[idx], log_range);
    probabilities_data[idx] =
        gpu_adjust_prob(probabilities_data[idx], num_samples, num_tries);
  }
}

template <typename T>
int UniqSampler(const Sampler& sampler, const std::size_t num_samples,
                int64_t* samples_data) {
  // sample num_samles unique samples for an example, note that they are not
  // all negative samples
  std::unordered_set<int64_t> tmp_samples;
  tmp_samples.clear();
  int num_tries = 0;
  int j = 0;
  while (j < num_samples) {
    ++num_tries;
    auto v = sampler.Sample();
    auto insert_ok = tmp_samples.insert(v).second;
    if (!insert_ok) {
      continue;
    }
    samples_data[j] = v;
    ++j;
  }
  return num_tries;
}
/*
template <typename T>
void Print(Tensor & t, std::string name) {
  if (!FLAGS_debug_print) {
    return;
  }
  VLOG(1) << "qxz print "<< name;
  VLOG(1) << name << "size = " << t.numel();
  size_t size = t.numel();
  type *d = t.data<type>();
#ifdef PADDLE_WITH_CUDA
    std::vector<type> vec;
    platform::DeviceContextPool::Instance().Get(t.place())->Wait();
    if (platform::is_gpu_place(t.place())) {
      vec.resize(size);
      cudaMemcpy(vec.data(), d, sizeof(T) * size, cudaMemcpyDeviceToHost);
      d = vec.data();
    }
#endif
  VLOG(1) << name << " data_ptr = " << static_cast<void*>(d);
  std::string out;
  for (size_t i = 0; i < size; i++) {
       out += std::to_string(d[i]);
       out += ",";
  }
  VLOG(1) << out;
}*/

template <typename T>
void GPUSampleWithProb<T>::operator()(
    const platform::CUDADeviceContext& context, const int seed,
    const int dict_size, const bool uniq, const std::size_t num_samples,
    const Tensor* L, Tensor* S, Tensor* P) {
  // UNDERSTAND: dimension issues
  const auto lbl_dim = L->dims();
  const int batch_size = lbl_dim[0];
  const int num_true = lbl_dim[1];
  const int num_sampled_classes = num_true + num_samples;
  framework::DDim ret_dim{batch_size, num_sampled_classes};

  // UNDERSTAND: raw data view
  const int64_t* label_data = L->data<int64_t>();
  int64_t* samples_data = S->data<int64_t>();
  T* probabilities_data = P->data<T>();

  int s_size = num_samples;
  framework::DDim s_dim{s_size};
  Tensor s;
  int64_t* s_data = s.mutable_data<int64_t>(s_dim, platform::CPUPlace());

  math::LogUniformSampler sampler(dict_size, seed);

  int range = dict_size;
  float log_range = log(range + 1);

  int num_tries = UniqSampler<T>(sampler, num_samples, s_data);
  VLOG(1) << "num_tries: " << num_tries;
  PADDLE_ENFORCE(cudaMemcpy(samples_data + num_true, s_data,
                            sizeof(int64_t) * num_samples,
                            cudaMemcpyHostToDevice));

  int threads = 512;
  const size_t size = batch_size * num_sampled_classes;
  int grid = (batch_size * num_sampled_classes + threads - 1) / threads;
  SamplingCondidate<T><<<grid, threads, 0, context.stream()>>>(
      size, num_tries, range, log_range, num_true, num_samples, label_data,
      samples_data, probabilities_data);
}

template class GPUSampleWithProb<float>;
template class GPUSampleWithProb<double>;
}  // namespace math
}  // namespace operators
}  // namespace paddle