pybind.cc 44.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/platform/enforce.h"
43
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
46
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
49
#include "paddle/fluid/pybind/imperative.h"
50 51
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
52
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
54

55
#include "paddle/fluid/string/to_string.h"
56

D
Dong Zhihong 已提交
57
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
58
#ifndef _WIN32
Y
Yi Wang 已提交
59
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
60
#endif
Y
Yi Wang 已提交
61 62
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
63 64
#endif

M
minqiyang 已提交
65 66
#include "pybind11/stl.h"

67 68 69 70
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
71 72 73
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

74
namespace paddle {
75
namespace pybind {
76
bool IsCompiledWithCUDA() {
77
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
78 79 80 81 82 83
  return false;
#else
  return true;
#endif
}

84 85 86 87 88 89 90 91
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
  return true;
#else
  return false;
#endif
}

Y
update  
Yancey1989 已提交
92
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
93
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
94 95 96 97 98 99
  return true;
#else
  return false;
#endif
}

100
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
101 102 103
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
104
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
105
  m.doc() = "C++ core of PaddlePaddle";
106

107 108 109 110
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

111
  BindException(&m);
Y
Yu Yang 已提交
112

113
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
114 115
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
116 117 118 119
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
M
minqiyang 已提交
120
      .def("_grad_name", &imperative::VarBase::GradName)
121
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
122 123 124 125 126 127
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
128 129 130
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
M
minqiyang 已提交
131
                      LOG(ERROR) << "set var to pointer: " << var;
M
minqiyang 已提交
132 133 134
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
135 136 137 138 139 140
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
141 142 143 144 145 146 147
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
          });
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

170 171 172
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
173
      .def("_get_dims",
174
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
175
      .def("_set_dims",
Q
qijun 已提交
176
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
177
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
178
           })
Y
yuyang18 已提交
179
      .def("_set_layout",
D
dzhwinter 已提交
180 181 182
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
183
      .def("_alloc_float",
D
dzhwinter 已提交
184
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
185
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
186
           })
Y
yuyang18 已提交
187
      .def("_alloc_float",
Y
Yu Yang 已提交
188
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
189
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
190
           })
Y
yuyang18 已提交
191
      .def("_alloc_int",
Y
Yu Yang 已提交
192
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
193
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
194
           })
Y
yuyang18 已提交
195
      .def("_alloc_int",
D
dzhwinter 已提交
196
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
197
             self.mutable_data<int>(place);
Q
qijun 已提交
198
           })
Y
yuyang18 已提交
199
      .def("_alloc_int",
C
chengduoZH 已提交
200 201 202
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
203
      .def("_alloc_float",
C
chengduoZH 已提交
204 205 206
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
207 208
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
209
      .def("set", PyCPUTensorSetFromArray<double>)
210
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
211
      .def("set", PyCPUTensorSetFromArray<bool>)
212
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
213
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
214
      .def("set", PyCPUTensorSetFromArray<int8_t>)
215
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
216 217
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
218
      .def("set", PyCUDATensorSetFromArray<double>)
219
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
220
      .def("set", PyCUDATensorSetFromArray<bool>)
221
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
222
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
223
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
224 225 226 227 228 229
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
230
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
231
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
232
#endif
233
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
234 235 236 237
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
238
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
239

X
Xin Pan 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
253
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
254
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
255
     columns, hence [5, 2].
X
Xin Pan 已提交
256 257 258

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
259 260
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
284 285
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
286 287 288 289 290 291 292 293 294 295 296 297 298 299
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
300
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
301 302 303 304 305
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
306
      .def("set_lod",
307
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
308
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
309
             LoD new_lod;
310 311
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
312 313
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
314
             self.set_lod(new_lod);
D
dangqingqing 已提交
315
           })
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
341
      // Set above comments of set_lod.
342 343 344 345 346 347 348 349 350 351 352 353 354
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
355 356
      });

Q
qijun 已提交
357 358 359 360 361 362 363 364 365 366 367
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
368 369
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
370 371
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
372 373 374 375 376 377 378 379 380
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
381
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
382
      .def("rows", [](SelectedRows &self) {
383 384 385 386 387
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
388
      });
Q
qijun 已提交
389

390
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
391 392 393

All parameter, weight, gradient are variables in Paddle.
)DOC")
394
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
395
      .def("set_int",
396 397
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
398 399 400 401 402 403 404
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
405
      .def("get_tensor",
406 407
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
408 409
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
410 411 412
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
413 414 415 416 417
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
418 419 420
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
421
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
422 423 424 425 426
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
427
#endif
Y
Refine  
Yu Yang 已提交
428 429 430 431 432
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
433
           py::return_value_policy::reference);
434

Y
Refine  
Yu Yang 已提交
435
  py::class_<framework::ReaderHolder>(m, "Reader", "")
436
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
437

S
sneaxiy 已提交
438 439 440 441
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
442 443
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
444
      .def("push",
S
sneaxiy 已提交
445
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
446
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
447
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
448
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
449
           })
S
sneaxiy 已提交
450 451 452 453
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
454

S
sneaxiy 已提交
455
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
456
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
457
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
458
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
459 460 461 462 463 464
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
465 466
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
467
              return holder->GetQueue();
S
sneaxiy 已提交
468
            },
S
sneaxiy 已提交
469
        py::return_value_policy::copy);
S
sneaxiy 已提交
470

Q
Qiao Longfei 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
491
      .def("var",
492
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
493
             return self.Var(name);
Y
Yu Yang 已提交
494
           },
495
           py::return_value_policy::reference)
496
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
497
      .def(py::init<>())
498
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
499
           py::return_value_policy::reference)
Y
Yu Yang 已提交
500
      .def("drop_kids", &Scope::DropKids);
501

Y
Yu Yang 已提交
502 503
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
504 505
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
506 507 508 509 510 511 512 513 514 515
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
516 517
    return ret_values;
  });
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
534
  m.def("prune", [](const ProgramDesc &origin,
535
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
536
    ProgramDesc prog_with_targets(origin);
537
    for (const auto &t : targets) {
538
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
539
    }
540
    proto::ProgramDesc pruned_desc;
541
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
542
    return new ProgramDesc(pruned_desc);
543
  });
544 545 546 547
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
548 549 550
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
551 552
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
553
  // clang-format off
Y
Yu Yang 已提交
554
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
555 556
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
557
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
558 559 560
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
561
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
562
                      -> paddle::platform::DeviceContext* {
563
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
564
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
565
#else
Q
qijun 已提交
566
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
567
#endif
C
chengduoZH 已提交
568 569 570 571 572 573 574 575 576 577 578
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
579
// clang-format on
P
peizhilin 已提交
580
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
581 582
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
583
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
584
      .def(py::init<int>())
D
dzhwinter 已提交
585
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
586

587 588 589
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
590

C
chengduoZH 已提交
591 592 593 594
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
595 596 597 598 599 600 601
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
602
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
603
             self = gpu_place;
C
chengduoZH 已提交
604 605
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
606 607
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
608
      });
Y
Yu Yang 已提交
609

Y
Yu Yang 已提交
610 611 612
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
613
                    proto::OpDesc desc;
Y
Yu Yang 已提交
614 615 616 617 618
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
619
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
620
                  })
621
      .def("run",
622
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
623 624 625
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
626
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
627 628 629 630 631
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
632 633 634 635 636 637 638
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
639 640
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
641
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
642
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
643 644 645 646
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
647

F
fengjiayi 已提交
648
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
649
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
650
      .def("close", &Executor::Close)
S
sneaxiy 已提交
651 652 653 654 655
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
656

D
dzhwinter 已提交
657
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
658
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
659 660
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
661

662
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
663
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
664
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
665 666 667 668 669 670
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
671

672
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
673
  m.def("get_fetch_variable", framework::GetFetchVariable);
674
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
675

X
Xin Pan 已提交
676 677
  m.def("_is_program_version_supported", IsProgramVersionSupported);

678 679 680 681 682
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
683

Y
Yu Yang 已提交
684 685 686 687 688 689 690 691 692
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
693
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
694 695
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
712 713 714
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
715
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
716
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
717
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
718

P
peizhilin 已提交
719
#ifndef _WIN32
D
dangqingqing 已提交
720 721 722
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
723
#endif
P
peizhilin 已提交
724
#endif
Y
Yu Yang 已提交
725

726 727 728 729
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
730
      .value("kAll", platform::ProfilerState::kAll)
731 732 733 734 735 736 737 738 739 740 741 742 743
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
744
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
745
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
746

747 748
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
749 750 751 752 753
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
754 755 756
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
757

X
fix  
Xin Pan 已提交
758 759
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
760 761 762 763 764 765 766 767 768 769 770 771 772 773
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
774
  // -- python binds for parallel executor.
Y
yuyang18 已提交
775
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
776 777 778 779
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
780 781 782 783 784 785 786 787 788 789 790
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
791 792 793

        )DOC");

Y
yuyang18 已提交
794
  exec_strategy.def(py::init())
Y
yuyang18 已提交
795 796 797 798 799
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
800 801 802 803 804 805 806 807 808 809
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
810
      .def_property(
811 812 813 814
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
815 816 817 818
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
819 820 821 822 823
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
824 825 826 827
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
828 829 830 831 832 833 834
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
835 836 837 838 839 840 841 842 843 844 845
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
846 847 848 849 850 851
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
852

Y
yuyang18 已提交
853
  exec_strategy.def_property(
Y
yuyang18 已提交
854 855 856 857 858 859 860
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
861 862
      });

C
chengduo 已提交
863 864 865 866
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
867 868 869 870 871 872 873 874 875 876 877
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
878
)DOC");
Y
yuyang18 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
895
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
896
            self.reduce_ = strategy;
C
chengduo 已提交
897 898 899 900 901 902 903
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
904 905 906 907 908
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
909
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
910
            self.gradient_scale_ = strategy;
C
chengduo 已提交
911 912 913 914 915 916
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
917 918 919 920
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
921
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
922
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
923 924 925 926
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
927 928 929
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
930
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
931
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
932 933
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
934 935 936 937 938 939
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
940
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
941 942 943 944 945 946 947 948 949
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
950
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
951 952 953
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
954 955 956 957 958 959
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
960 961 962 963 964 965 966 967 968 969 970 971
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
972 973 974 975 976 977
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
978
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
979 980 981 982 983
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
984 985 986 987 988 989 990 991
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
992
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
993
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
994 995 996 997 998
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
999 1000 1001

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1002
                  const std::string &, Scope *, std::vector<Scope *> &,
1003 1004
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1005 1006 1007 1008
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1009 1010 1011 1012 1013
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1014 1015 1016 1017
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1018 1019 1020 1021 1022 1023
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1024

1025
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1026
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1027
}
1028
}  // namespace pybind
1029
}  // namespace paddle