nn.py 314.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
Y
Yu Yang 已提交
173 174 175 176 177 178 179 180 181
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329 330 331
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
    tmp = helper.create_variable_for_type_inference(dtype)
333 334
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
335 336 337 338 339
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
340 341 342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
345 346 347
    return tmp


W
wopeizl 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
364

W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
376

W
wopeizl 已提交
377 378 379 380
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
381

W
wopeizl 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
468 469


Y
Yibing Liu 已提交
470 471 472 473 474 475 476 477 478 479 480
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
481 482
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
483 484 485
    """
    **Dynamic LSTMP Layer**

486 487 488 489 490 491
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
492 493 494 495 496

    The formula is as follows:

    .. math::

497
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
498

499
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
500

501
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
502

503
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
504

505
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
506

507
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
508

509
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
510

Y
Yibing Liu 已提交
511 512 513 514 515 516
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
517
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
518
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
519
          bias vector).
Y
Yibing Liu 已提交
520 521 522
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
523
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
524
    * :math:`h`: The hidden state.
525
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
526 527
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
528
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
529
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
530
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
531 532
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
533 534 535 536

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
537

Y
Yibing Liu 已提交
538 539 540 541 542 543 544 545 546 547 548 549
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
550
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
551 552
                               hidden-hidden weight and projection weight.

553 554
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
555 556
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
557 558
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
559
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
560 561 562 563 564

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
565
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
566 567 568 569 570 571
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
572
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
573 574 575
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
576
                                - The shape is (1 x 7D).
C
chengduo 已提交
577 578 579 580 581

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
582 583 584 585 586 587 588 589 590
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
591
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
592 593
                              default "tanh".
        proj_activation(str): The activation for projection output.
594
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
595 596
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
597 598
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
599 600

    Returns:
601 602 603 604
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
605 606

    Examples:
607

Y
Yibing Liu 已提交
608 609
        .. code-block:: python

610 611 612 613
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
614
            hidden_dim, proj_dim = 512, 256
615
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
616
                                     act=None, bias_attr=None)
617 618 619
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
620 621 622 623
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
624
    """
625

C
chengduo 已提交
626
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
627
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
628
    size = size // 4
Y
Yibing Liu 已提交
629 630 631 632 633 634 635 636 637 638
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
639 640 641 642 643 644
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
673 674 675 676 677 678 679 680 681
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
682
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
683

684
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
685
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
686

G
guosheng 已提交
687 688 689 690 691 692 693 694 695
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
696

G
guosheng 已提交
697
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
698

G
guosheng 已提交
699
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
700 701
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
702 703 704 705
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
706
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
707 708

    Args:
709 710
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
711
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
712
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
713 714
            is the hidden size.
        size(int): The dimension of the gru cell.
715
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
716 717
            hidden-hidden weight matrix. Note:

718
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
719
              :math:`D` is the hidden size.
720
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
721
              The first part are weights of the update gate and reset gate with
722
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
723
              candidate hidden state with shape :math:`(D \\times D)`.
724 725 726 727 728

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
729
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
730
            the bias in the update gate, reset gate and candidate calculations.
731 732 733
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
734 735
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
736
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
737 738 739
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
740
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
741
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
742 743 744 745
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
746 747

    Returns:
G
guosheng 已提交
748
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
749
            and sequence length is the same with the input.
750

G
guosheng 已提交
751
    Examples:
752

G
guosheng 已提交
753 754
        .. code-block:: python

755 756 757 758
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
759
            hidden_dim = 512
760
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
761 762 763 764 765 766 767 768 769 770
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
771
    batch_size = input.shape[0]
G
guosheng 已提交
772
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
773
    if h_0:
G
guosheng 已提交
774
        assert h_0.shape == (
Y
Yancey 已提交
775 776 777
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
778

X
Xin Pan 已提交
779 780 781 782
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
801 802 803
def gru_unit(input,
             hidden,
             size,
804 805
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
806
             activation='tanh',
807
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
808
    """
809
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
810

811 812
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
813

814
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
815

816
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
817

818
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
819 820

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
821 822 823
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
824 825
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

826 827
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
828 829 830
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
831 832 833

    Args:
        input (Variable): The fc transformed input value of current step.
834
        hidden (Variable): The hidden value of gru unit from previous step.
835
        size (integer): The input dimension value.
836 837 838 839 840 841 842 843 844 845 846 847 848 849
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
850
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
851
            the bias in the update gate, reset gate and candidate calculations.
852 853 854
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
855 856
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
857 858 859 860
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
861

862 863 864 865 866 867
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
868

869
             # assuming we have x_t_data and prev_hidden of size=10
870
             x_t = fluid.layers.fc(input=x_t_data, size=30)
871 872
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
873 874 875 876 877 878 879 880 881 882 883 884

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
885
    size = size // 3
Y
Yu Yang 已提交
886 887

    # create weight
888 889
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
890

X
Xin Pan 已提交
891 892 893
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
894
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
895
    # create bias
896
    if helper.bias_attr:
Y
Yu Yang 已提交
897 898 899
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
900
        inputs['Bias'] = bias
Y
Yu Yang 已提交
901 902 903

    helper.append_op(
        type='gru_unit',
904
        inputs=inputs,
Y
Yu Yang 已提交
905 906 907 908 909 910
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
911 912
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
913 914 915 916 917
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
918
@templatedoc()
919
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
920 921 922 923 924 925 926
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
927
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
928 929 930 931
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
932 933 934
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
935 936

    """
Y
Yu Yang 已提交
937 938 939 940 941 942
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
943 944 945 946 947 948 949 950
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
966 967 968 969
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
970

W
wopeizl 已提交
971 972
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
973

W
wopeizl 已提交
974
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
975

W
wopeizl 已提交
976
        label(${label_type}): ${label_comment}
977

W
wopeizl 已提交
978 979
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
980

W
wopeizl 已提交
981 982
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
983

W
wopeizl 已提交
984 985 986 987 988 989 990 991 992 993
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
994
                "Transition": transition,
W
wopeizl 已提交
995 996
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
997

W
wopeizl 已提交
998
    return viterbi_path
Y
Yu Yang 已提交
999 1000


Y
yi.wu 已提交
1001
@templatedoc()
F
fengjiayi 已提交
1002
def cos_sim(X, Y):
Y
Yu Yang 已提交
1003
    """
Y
yi.wu 已提交
1004 1005 1006
    ${comment}

    Args:
1007 1008
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1009

Y
yi.wu 已提交
1010
    Returns:
1011
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1012
    """
F
fengjiayi 已提交
1013
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1014 1015 1016
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1027 1028 1029 1030 1031
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1032
            dropout_implementation="downgrade_in_infer"):
1033 1034 1035 1036 1037
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1038
    training. The dropout operator randomly sets (according to the given dropout
1039 1040 1041 1042
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1043 1044
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1045 1046 1047 1048 1049 1050 1051
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1063
                                           dropout op can be removed from the program.
P
phlrain 已提交
1064
                                           the program will be efficient
1065

P
phlrain 已提交
1066

1067 1068

    Returns:
1069
        Variable: A tensor variable is the shape with `x`.
1070 1071

    Examples:
1072

1073 1074
        .. code-block:: python

1075 1076
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1077 1078
    """

F
fengjiayi 已提交
1079
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1080 1081 1082
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1083 1084 1085 1086

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1087 1088 1089 1090 1091
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1092 1093 1094 1095
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1096 1097
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1098
        })
1099 1100 1101
    return out


1102
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1103
    """
Y
Yibing Liu 已提交
1104 1105
    **Cross Entropy Layer**

1106 1107 1108
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1109 1110

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1111
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1112

Y
Yibing Liu 已提交
1113
        .. math::
Y
yangyaming 已提交
1114

Y
Yibing Liu 已提交
1115 1116 1117
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1118 1119
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1120 1121 1122 1123 1124

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1125
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1126 1127 1128
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1129 1130
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1131
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1132

Y
Yibing Liu 已提交
1133
    Args:
Y
yangyaming 已提交
1134
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1135 1136 1137 1138
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1139
        label (Variable|list): the ground truth which is a 2-D tensor. When
1140 1141 1142 1143
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1144
        soft_label (bool): a flag indicating whether to
1145
                                           interpretate the given labels as soft
1146
                                           labels. Default: `False`.
M
minqiyang 已提交
1147 1148
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1149
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1150 1151 1152 1153 1154

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1155 1156 1157 1158 1159
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1160 1161 1162 1163 1164 1165

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1166
    """
F
fengjiayi 已提交
1167
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1168
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1169 1170 1171 1172 1173
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1174 1175
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1176 1177 1178
    return out


1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
def bpr_loss(input, label_pos):

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
                'Label_Pos': [label_pos]},
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1191
def square_error_cost(input, label):
Y
Yu Yang 已提交
1192
    """
1193 1194
    **Square error cost layer**

1195 1196
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1211 1212
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1213 1214

    Returns:
G
guosheng 已提交
1215
        Variable: The tensor variable storing the element-wise squared error \
1216
                  difference of input and label.
1217 1218 1219 1220 1221 1222 1223 1224

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1225
    """
F
fengjiayi 已提交
1226
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1227
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1228 1229 1230 1231 1232 1233
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1234
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1235
    helper.append_op(
F
fengjiayi 已提交
1236 1237
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1238 1239 1240
    return square_out


Y
yi.wu 已提交
1241
@templatedoc()
Y
Yu Yang 已提交
1242 1243 1244 1245
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1246
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1247
    """
Y
yi.wu 已提交
1248
    **Chunk Evaluator**
Y
yi.wu 已提交
1249

Y
yangyaming 已提交
1250
    This function computes and outputs the precision, recall and
1251
    F1-score of chunk detection.
Y
yi.wu 已提交
1252

Y
yi.wu 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1261

Y
yi.wu 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1287

Y
yi.wu 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1312
    Args:
1313 1314 1315 1316 1317
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1318

Y
yi.wu 已提交
1319
    Returns:
Y
update  
yi.wu 已提交
1320 1321 1322
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1323

Y
yi.wu 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1336
    """
F
fengjiayi 已提交
1337
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1338 1339

    # prepare output
X
Xin Pan 已提交
1340 1341 1342 1343 1344 1345 1346
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1347 1348 1349 1350 1351 1352 1353 1354

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1355 1356 1357 1358
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1359 1360 1361
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1362 1363
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1364
        })
1365 1366
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1367 1368


1369
@templatedoc()
Y
Yu Yang 已提交
1370 1371 1372 1373 1374 1375 1376
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1377 1378
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1379 1380 1381 1382
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1383 1384 1385 1386 1387 1388 1389

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1403

1404 1405
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1406 1407 1408 1409 1410 1411 1412
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1413
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1424
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1425 1426 1427 1428 1429 1430
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1431
def sequence_softmax(input, use_cudnn=False, name=None):
1432 1433 1434
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1435
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1452 1453 1454
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1467 1468
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1469
    softmax_out = helper.create_variable_for_type_inference(dtype)
1470 1471 1472 1473 1474 1475 1476 1477
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1478
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1479
    """
1480
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1481
    has the same shape as the input.
Q
qiaolongfei 已提交
1482

1483 1484 1485 1486 1487 1488
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1489
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1490 1491 1492 1493 1494 1495 1496

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1497
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1498 1499 1500 1501 1502 1503 1504 1505

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1506 1507 1508
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1521 1522
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1523
    softmax_out = helper.create_variable_for_type_inference(dtype)
1524 1525 1526 1527 1528 1529 1530 1531
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1532 1533 1534
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1535 1536
           stride=1,
           padding=0,
1537
           dilation=1,
Y
Yu Yang 已提交
1538 1539 1540
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1541
           use_cudnn=True,
1542 1543
           act=None,
           name=None):
Y
Yu Yang 已提交
1544
    """
C
chengduoZH 已提交
1545
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1546 1547
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1548
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1549 1550 1551 1552 1553 1554 1555
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1556 1557 1558
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1559

1560
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1561

C
chengduoZH 已提交
1562 1563
    .. math::

C
refine  
chengduoZH 已提交
1564
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1565

T
tensor-tang 已提交
1566
    Where:
C
chengduoZH 已提交
1567

1568 1569 1570 1571 1572
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1573
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1574 1575 1576

    Example:

1577 1578
        - Input:

W
weixing02 已提交
1579
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1580

W
weixing02 已提交
1581
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1582

1583
        - Output:
T
tensor-tang 已提交
1584

W
weixing02 已提交
1585
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1586

C
chengduoZH 已提交
1587
        Where
1588 1589

        .. math::
C
chengduoZH 已提交
1590

W
weixing02 已提交
1591 1592
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1593 1594

    Args:
1595
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1596
        num_filters(int): The number of filter. It is as same as the output
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1625 1626
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1627 1628
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1629
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1630
            will be named automatically. Default: None
C
chengduoZH 已提交
1631 1632

    Returns:
G
guosheng 已提交
1633
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1634 1635
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1636
    Raises:
1637 1638
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1639

C
chengduoZH 已提交
1640 1641 1642
    Examples:
        .. code-block:: python

1643 1644
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1645 1646 1647
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1648
    assert param_attr is not False, "param_attr should not be False here."
1649
    l_type = 'conv2d'
X
xzl 已提交
1650 1651
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1652
        l_type = 'depthwise_conv2d'
1653 1654 1655 1656

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1657 1658 1659 1660 1661
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1662
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1663

C
chengduoZH 已提交
1664 1665 1666
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1667
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1668

C
chengduoZH 已提交
1669 1670
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1671 1672

    input_shape = input.shape
M
minqiyang 已提交
1673
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1674 1675

    def _get_default_param_initializer():
C
chengduo 已提交
1676 1677
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1678 1679 1680 1681 1682 1683 1684 1685
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1686
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1687

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1702
    helper.append_op(
1703
        type=l_type,
Y
Yu Yang 已提交
1704 1705 1706 1707 1708
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1709 1710 1711
        attrs={
            'strides': stride,
            'paddings': padding,
1712
            'dilations': dilation,
C
chengduoZH 已提交
1713
            'groups': groups,
1714
            'use_cudnn': use_cudnn,
1715
            'use_mkldnn': False,
C
chengduoZH 已提交
1716
        })
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1740 1741 1742 1743 1744 1745
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1755 1756
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1757 1758 1759
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1760
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1786
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1787 1788
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1789
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1790 1791
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1792
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1793 1794
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1795
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1796 1797 1798 1799 1800 1801
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1812 1813
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1814 1815
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1816
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1817
            will be named automatically. Default: None.
C
chengduoZH 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1830 1831
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1832 1833 1834
    """

    l_type = 'conv3d'
C
chengduo 已提交
1835
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1846
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1860 1861 1862
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1863 1864 1865 1866 1867 1868 1869 1870
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1871
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1886
            'use_mkldnn': False
C
chengduoZH 已提交
1887 1888
        })

1889
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1890 1891 1892 1893

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1894
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1895
    """
Y
yangyaming 已提交
1896 1897 1898
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1910
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1911 1912 1913 1914 1915
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1916
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1917 1918 1919 1920 1921 1922 1923

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1924 1925
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1926

L
Luo Tao 已提交
1927 1928
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1929
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1930
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1931
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1932 1933 1934 1935 1936 1937 1938

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1939

Y
yangyaming 已提交
1940
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1941 1942 1943 1944 1945
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1946 1947
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1948
    """
F
fengjiayi 已提交
1949
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1950
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1951 1952
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1953 1954 1955 1956 1957 1958

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1959 1960
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1961

Y
yangyaming 已提交
1962 1963 1964 1965 1966
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1967 1968 1969
    return pool_out


C
add doc  
chengduoZH 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1989
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1990 1991 1992 1993 1994
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1995
def sequence_first_step(input):
L
Luo Tao 已提交
1996
    """
L
Luo Tao 已提交
1997
    This function gets the first step of sequence.
L
Luo Tao 已提交
1998 1999 2000 2001

    .. code-block:: text

       x is a 1-level LoDTensor:
2002
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2003 2004 2005 2006 2007
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2008
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2009
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2010

L
Luo Tao 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2020

Y
yangyaming 已提交
2021
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2022 2023 2024
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2025 2026 2027
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2028
def sequence_last_step(input):
L
Luo Tao 已提交
2029
    """
L
Luo Tao 已提交
2030
    This function gets the last step of sequence.
L
Luo Tao 已提交
2031 2032 2033 2034

    .. code-block:: text

       x is a 1-level LoDTensor:
2035
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2036 2037 2038 2039 2040
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2041
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2042
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2043

L
Luo Tao 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2053

Y
yangyaming 已提交
2054
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2055 2056 2057
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2058 2059 2060
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2061 2062 2063 2064
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2065
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2066 2067 2068 2069 2070
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2071

Y
Yibing Liu 已提交
2072 2073
	- Case:

2074
            Given the input Variable **input**:
2075

2076 2077 2078
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2079

2080
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2081

2082
            the output Variable will be
2083

2084 2085 2086
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2087 2088

    NOTE: The first dimension size of **input**, **offset** and **length**
2089
          should be equal. The **offset** should start from 0.
2090

Y
Yibing Liu 已提交
2091
    Args:
2092
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2093
                         sequences.
Y
Yibing Liu 已提交
2094 2095 2096 2097 2098 2099
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2100
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2111
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2112 2113 2114 2115
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2116
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2131
@templatedoc()
Y
Yu Yang 已提交
2132
def pool2d(input,
C
chengduoZH 已提交
2133 2134
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2135 2136
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2137
           global_pooling=False,
C
chengduoZH 已提交
2138
           use_cudnn=True,
2139
           ceil_mode=False,
2140 2141
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2142
    """
F
fengjiayi 已提交
2143
    ${comment}
2144 2145

    Args:
2146 2147 2148
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2149
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2150
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2151 2152
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2153
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2154 2155 2156 2157 2158 2159
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2160 2161 2162
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2163
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2164
                        layer will be named automatically.
2165
        exclusive (bool): Whether to exclude padding points in average pooling
2166
                          mode, default is true
F
fengjiayi 已提交
2167

2168
    Returns:
F
fengjiayi 已提交
2169
        Variable: The pooling result.
F
fengjiayi 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2183 2184 2185 2186
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2187
                            global_pooling=False)
Y
Yu Yang 已提交
2188 2189 2190 2191 2192
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2193

C
chengduoZH 已提交
2194 2195 2196 2197 2198
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2199 2200 2201 2202
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2203 2204
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2205

C
Add doc  
chengduoZH 已提交
2206
    l_type = 'pool2d'
2207 2208

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2209
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2210
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2211 2212

    helper.append_op(
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2224 2225
            "use_mkldnn": False,
            "exclusive": exclusive,
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2239 2240
           name=None,
           exclusive=True):
2241 2242
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2243
    pooling configurations mentioned in input parameters.
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2256
        exclusive (bool): Whether to exclude padding points in average pooling
2257
                          mode, default is true
2258

2259
    Returns:
2260
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2261 2262 2263 2264 2265
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2266

C
chengduoZH 已提交
2267 2268 2269 2270 2271
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2272 2273 2274
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2275

C
chengduoZH 已提交
2276 2277
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2278

2279 2280
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2281
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2282
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2283 2284

    helper.append_op(
2285
        type=l_type,
Y
Yu Yang 已提交
2286 2287 2288 2289 2290 2291 2292
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2293
            "paddings": pool_padding,
2294
            "use_cudnn": use_cudnn,
2295
            "ceil_mode": ceil_mode,
2296 2297
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2310
               data_layout='NCHW',
Y
Yang Yang 已提交
2311
               in_place=False,
2312 2313
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2314
               moving_variance_name=None,
2315 2316
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2317
    """
Q
qiaolongfei 已提交
2318 2319 2320 2321
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2322

Q
qiaolongfei 已提交
2323
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2324

Q
qiaolongfei 已提交
2325 2326
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2327 2328 2329
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2342 2343

    Args:
Q
qiaolongfei 已提交
2344
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2345 2346 2347 2348
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2349 2350 2351 2352 2353 2354 2355 2356
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2357
        data_layout(string, default NCHW): NCHW|NHWC
2358
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2359 2360 2361 2362
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2363
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2364
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2365 2366

    Returns:
Q
qiaolongfei 已提交
2367
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2368 2369 2370 2371 2372 2373 2374

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2375
    """
C
chengduo 已提交
2376
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2399
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2400

2401 2402
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2403 2404 2405
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2406
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2407
        shape=param_shape,
2408 2409 2410 2411 2412 2413 2414
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2415
            trainable=False,
W
wanghaoshuang 已提交
2416
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2417
        shape=param_shape,
2418 2419
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2420 2421 2422 2423 2424 2425

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2426 2427 2428 2429
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2430

X
Xin Pan 已提交
2431 2432
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2450 2451 2452 2453
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2454
            "use_mkldnn": False,
2455
            "fuse_with_relu": fuse_with_relu
2456
        })
Y
Yu Yang 已提交
2457 2458 2459 2460

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2461
@templatedoc()
G
guosheng 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2472
    ${comment}
G
guosheng 已提交
2473 2474 2475

    The formula is as follows:

Y
yuyang18 已提交
2476
    ..  math::
G
guosheng 已提交
2477 2478 2479 2480 2481 2482 2483

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2484 2485 2486 2487 2488 2489 2490 2491
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2492

G
guosheng 已提交
2493 2494
    Args:
        input(Variable): The input tensor variable.
2495
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2496
            normalization. Default True.
2497
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2498 2499
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2500
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2501
            Default 1.
2502
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2503
            division by zero. Default 1e-05.
G
guosheng 已提交
2504
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2505 2506
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2507 2508
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2509
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2510 2511
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2512
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2513
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2514
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2515 2516 2517
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2518 2519

    Returns:
Y
yuyang18 已提交
2520
        ${y_comment}
G
guosheng 已提交
2521 2522 2523

    Examples:

Y
yuyang18 已提交
2524 2525 2526
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2542
    if shift:
G
guosheng 已提交
2543 2544 2545 2546 2547 2548
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2549 2550 2551 2552 2553
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2647 2648 2649 2650
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2651 2652 2653
                     padding=0,
                     stride=1,
                     dilation=1,
2654
                     groups=None,
C
caoying03 已提交
2655
                     param_attr=None,
2656
                     bias_attr=None,
C
chengduoZH 已提交
2657
                     use_cudnn=True,
2658
                     act=None,
C
caoying03 已提交
2659
                     name=None):
Y
Yu Yang 已提交
2660
    """
2661 2662 2663 2664 2665 2666 2667 2668
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2669 2670
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2671 2672 2673
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2674 2675 2676 2677 2678

    For each input :math:`X`, the equation is:

    .. math::

2679
        Out = \sigma (W \\ast X + b)
2680

2681
    Where:
2682 2683 2684

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2685 2686 2687 2688
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2689

2690 2691 2692 2693
    Example:

        - Input:

2694
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2695

2696
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2697 2698 2699

        - Output:

2700
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2701 2702

        Where
Y
Yu Yang 已提交
2703

2704 2705
        .. math::

2706 2707 2708 2709
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2710 2711

    Args:
2712 2713 2714 2715
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2716 2717 2718 2719
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2748
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2749 2750 2751
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2752
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2753
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2754 2755

    Returns:
2756
        Variable: The tensor variable storing the convolution transpose result.
2757 2758

    Raises:
2759 2760
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2761 2762 2763 2764

    Examples:
       .. code-block:: python

2765 2766
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2767
    """
C
chengduo 已提交
2768
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2769 2770 2771 2772 2773 2774 2775 2776
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2777 2778 2779
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2780 2781 2782
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2783

C
chengduoZH 已提交
2784 2785
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2786

Y
Yu Yang 已提交
2787 2788 2789 2790 2791
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2792

Y
Yu Yang 已提交
2793 2794
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2795

C
chengduoZH 已提交
2796
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2797
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2798
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2799
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2800
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2801 2802 2803
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2804

2805 2806 2807 2808 2809 2810 2811
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2812
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2813
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2814

Y
Yu Yang 已提交
2815 2816 2817
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2818
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2819
    helper.append_op(
2820
        type=op_type,
Y
Yu Yang 已提交
2821 2822
        inputs={'Input': [input],
                'Filter': [img_filter]},
2823
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2824
        attrs={
2825
            'output_size': output_size,
2826 2827 2828 2829 2830
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2831 2832
        })

2833 2834 2835
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2836 2837


2838
def conv3d_transpose(input,
Y
Yu Yang 已提交
2839 2840 2841
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2842 2843 2844
                     padding=0,
                     stride=1,
                     dilation=1,
2845
                     groups=None,
C
caoying03 已提交
2846
                     param_attr=None,
2847
                     bias_attr=None,
C
chengduoZH 已提交
2848
                     use_cudnn=True,
2849
                     act=None,
C
caoying03 已提交
2850
                     name=None):
Y
Yu Yang 已提交
2851
    """
2852
    **Convlution3D transpose layer**
2853

2854
    The convolution3D transpose layer calculates the output based on the input,
2855
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2856 2857 2858 2859 2860 2861
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2862 2863 2864
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2865 2866 2867 2868 2869

    For each input :math:`X`, the equation is:

    .. math::

2870
        Out = \sigma (W \\ast X + b)
2871 2872 2873

    In the above equation:

2874 2875
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2876 2877 2878 2879
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2880

2881 2882 2883 2884
    Example:

        - Input:

2885
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2886

2887
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2888 2889 2890

        - Output:

2891
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2892 2893

        Where
Y
Yu Yang 已提交
2894

2895 2896
        .. math::

2897 2898 2899
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2900 2901

    Args:
2902
        input(Variable): The input image with [N, C, D, H, W] format.
2903 2904 2905
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2906
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2907 2908
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2909
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2910 2911 2912
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2913 2914
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2915
        stride(int|tuple): The stride size. If stride is a tuple, it must
2916 2917
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2918
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2919 2920 2921
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2922 2923 2924 2925 2926
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2936 2937
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2938 2939
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2940 2941
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2942 2943

    Returns:
2944
        Variable: The tensor variable storing the convolution transpose result.
2945 2946

    Raises:
2947 2948
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2949 2950 2951 2952

    Examples:
       .. code-block:: python

2953 2954
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2955
    """
C
chengduo 已提交
2956
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2957 2958
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2959
    if not isinstance(input, Variable):
2960
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2961 2962
    input_channel = input.shape[1]

2963 2964 2965
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2966

C
chengduoZH 已提交
2967 2968 2969
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2970 2971 2972 2973 2974 2975
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2976 2977 2978
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2979

2980
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2981
                         padding[0] - 1) // dilation[0] + 1
2982
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2983
                         padding[1] - 1) // dilation[1] + 1
2984
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2985
                         padding[2] - 1) // dilation[2] + 1
2986
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2987
    else:
2988 2989
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2990

2991
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2992
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2993 2994 2995
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2996
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2997
    helper.append_op(
2998
        type=l_type,
Y
Yu Yang 已提交
2999 3000
        inputs={'Input': [input],
                'Filter': [img_filter]},
3001
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3002 3003 3004 3005
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3006
            'groups': groups,
C
chengduoZH 已提交
3007 3008
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3009

3010 3011
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3012
    return out
Y
yangyaming 已提交
3013 3014


Y
yangyaming 已提交
3015
def sequence_expand(x, y, ref_level=-1, name=None):
3016
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3017 3018 3019 3020
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3021 3022 3023 3024 3025

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3026
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3027
                x.data = [[a], [b], [c], [d]]
3028 3029 3030
                x.dims = [4, 1]

            y is a LoDTensor:
3031 3032
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3033

Y
yangyaming 已提交
3034
            ref_level: 0
3035

Y
yangyaming 已提交
3036
            then output is a 1-level LoDTensor:
3037
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3038
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3039 3040 3041 3042
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3043
                x.data = [[a], [b], [c]]
3044 3045 3046
                x.dims = [3, 1]

            y is a LoDTensor:
3047
                y.lod = [[2, 0, 3]]
3048

Y
yangyaming 已提交
3049
            ref_level: -1
3050

Y
yangyaming 已提交
3051 3052 3053
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3054 3055 3056
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3057 3058
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3059
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3060
                        will be named automatically.
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3071
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3072
    """
Y
yangyaming 已提交
3073
    helper = LayerHelper('sequence_expand', input=x, **locals())
3074
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3075
    tmp = helper.create_variable_for_type_inference(dtype)
3076
    helper.append_op(
Y
yangyaming 已提交
3077 3078 3079 3080 3081
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3082
    return tmp
3083 3084


C
chengduo 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3141
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3142 3143 3144 3145 3146 3147 3148 3149
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3150
@templatedoc()
3151
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3152 3153 3154 3155 3156
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3157 3158 3159
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3160
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3161 3162 3163 3164
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3165 3166 3167
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3168

F
fengjiayi 已提交
3169
    Returns:
M
minqiyang 已提交
3170
        Variable: The padded sequence batch and the original lengths before
3171
                  padding. All sequences has the same length.
M
minqiyang 已提交
3172

F
fengjiayi 已提交
3173 3174 3175 3176 3177 3178 3179
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3180
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3181
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3182 3183 3184 3185 3186
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3187 3188
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3189 3190 3191 3192

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3193 3194 3195 3196 3197 3198
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3199 3200
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3201
        attrs={'padded_length': maxlen})
3202
    return out, length
F
fengjiayi 已提交
3203 3204


3205
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3206
    """
3207
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3208

3209 3210
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3220 3221 3222
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3223
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3224 3225 3226 3227 3228 3229

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3230
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3231 3232 3233 3234 3235 3236

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3237 3238
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3253
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3265 3266 3267 3268 3269 3270 3271 3272 3273
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3274 3275
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3276 3277 3278

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3279 3280

    This layer does the search in beams for one time step. Specifically, it
3281 3282 3283 3284 3285 3286
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3296

3297
    Args:
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3323

3324
    Returns:
3325 3326
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3327 3328 3329 3330

    Examples:
        .. code-block:: python

3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3348 3349 3350 3351
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3352 3353 3354
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3355 3356 3357 3358 3359

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3360
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3378 3379 3380 3381 3382 3383 3384
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3385

3386 3387 3388 3389 3390 3391 3392 3393 3394
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3395

3396 3397 3398 3399 3400 3401
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3402

3403 3404 3405 3406 3407 3408 3409 3410
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3411 3412
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3428 3429 3430 3431
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3432
              param_attr=None,
C
caoying03 已提交
3433 3434
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3435 3436 3437 3438
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3439
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3440

3441
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3442

3443
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3444

3445
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3446 3447 3448

            h_t & = o_t tanh(c_t)

3449 3450 3451 3452 3453 3454
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3455 3456 3457

        .. math::

3458
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3459 3460 3461 3462 3463 3464 3465 3466

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3467
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3468 3469

    Args:
Y
yangyaming 已提交
3470 3471 3472 3473 3474 3475
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3476
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3489 3490
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3491 3492

    Returns:
Y
yangyaming 已提交
3493
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3494 3495

    Raises:
3496 3497 3498 3499
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3500 3501 3502 3503 3504 3505

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3506
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3507
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3508
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3525
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3526 3527 3528 3529
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3530 3531
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3532 3533 3534
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3535
    size = cell_t_prev.shape[1]
3536
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3537 3538
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3539
                param_attr=param_attr,
3540
                bias_attr=bias_attr)
Y
yangyaming 已提交
3541
    dtype = x_t.dtype
X
Xin Pan 已提交
3542 3543
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3553
    return h, c
G
guosheng 已提交
3554 3555


C
caoying03 已提交
3556
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3557
    """
Y
yangyaming 已提交
3558
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3559 3560 3561

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3562
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3563 3564
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3565 3566
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3567
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3568
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3569
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3570 3571
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3572 3573 3574

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3575

G
guosheng 已提交
3576 3577 3578 3579 3580 3581
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3582
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3583 3584 3585 3586
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3587 3588 3589 3590

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3591
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3592 3593 3594
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3595 3596
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3597
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3598 3599
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3600 3601 3602 3603 3604
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3605
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3606 3607 3608 3609
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3610 3611


C
caoying03 已提交
3612
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3613
    """
Y
Yibing Liu 已提交
3614
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3615 3616 3617

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3618 3619 3620
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3621
            must be in the range :math:`[-rank(input), rank(input))`. If
3622
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3623
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3624 3625
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3626
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3627
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3628
                       will be named automatically.
G
guosheng 已提交
3629 3630

    Returns:
Y
Yibing Liu 已提交
3631
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3632

G
guosheng 已提交
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3643 3644
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3645 3646 3647 3648 3649 3650 3651

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3652 3653
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3654
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3655 3656
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3657 3658 3659 3660 3661
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3662
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3663 3664 3665 3666
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3667 3668


C
caoying03 已提交
3669
def reduce_max(input, dim=None, keep_dim=False, name=None):
3670
    """
Y
yangyaming 已提交
3671
    Computes the maximum of tensor elements over the given dimension.
3672 3673 3674

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3675
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3676 3677 3678
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3679
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3680 3681
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3682
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3683 3684
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3685 3686 3687

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3700 3701 3702 3703 3704 3705 3706

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3707 3708
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3709
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3710 3711
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3712 3713 3714 3715 3716
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3717
            'dim': dim if dim != None else [0],
3718 3719 3720 3721 3722 3723
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3724
def reduce_min(input, dim=None, keep_dim=False, name=None):
3725
    """
Y
yangyaming 已提交
3726
    Computes the minimum of tensor elements over the given dimension.
3727 3728 3729

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3730
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3731 3732 3733
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3734
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3735 3736
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3737
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3738 3739
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3740 3741 3742

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3755 3756 3757 3758 3759 3760 3761

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3762 3763
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3764
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3765 3766
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3767 3768 3769 3770 3771
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3772
            'dim': dim if dim != None else [0],
3773 3774 3775 3776
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3777 3778


3779 3780 3781 3782 3783 3784
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3785
        dim (list|int|None): The dimensions along which the product is performed. If
3786 3787
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3788 3789
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3790 3791 3792
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3793
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3794
            layer will be named automatically.
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3809
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3810
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3811 3812 3813 3814 3815 3816 3817

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3818 3819
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3820
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3821 3822
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3823 3824 3825 3826 3827
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3828
            'dim': dim if dim != None else [0],
3829 3830 3831 3832 3833 3834
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3835
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3836
    """
C
caoying03 已提交
3837
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3838 3839 3840

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3841 3842 3843 3844 3845
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3846
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3847
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3848
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3849 3850
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3851 3852

    Returns:
D
dzhwinter 已提交
3853
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3863 3864
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3880
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3903
    .. math::
3904 3905

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3906 3907 3908 3909 3910

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3911
        x(Variable|list): The input tensor to l2_normalize layer.
3912
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3913 3914
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3915
        epsilon(float): The epsilon value is used to avoid division by zero, \
3916
            the defalut value is 1e-10.
3917
        name(str|None): A name for this layer(optional). If set None, the layer \
3918
            will be named automatically.
C
caoying03 已提交
3919 3920

    Returns:
3921
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3922 3923

    Examples:
3924

C
caoying03 已提交
3925 3926
        .. code-block:: python

3927 3928 3929 3930
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3931 3932
    """

F
fengjiayi 已提交
3933 3934
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3935 3936
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3937 3938
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3939
    helper.append_op(
3940 3941 3942 3943
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3944
        attrs={
3945 3946
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3947 3948
        })
    return out
3949 3950


S
sneaxiy 已提交
3951
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3952
    """
Y
ying 已提交
3953 3954 3955 3956
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3957

C
chengduoZH 已提交
3958
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3959
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3960

3961 3962 3963 3964 3965
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3966
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3967

C
chengduoZH 已提交
3968
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3969
      performs in the following way.
G
guosheng 已提交
3970

3971
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3972
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3973
        last two dimensions and a batched matrix multiply supporting broadcast
3974
        applies on the two tensors.
G
guosheng 已提交
3975

Y
ying 已提交
3976 3977
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3978
    removed after matrix multiplication.
G
guosheng 已提交
3979 3980 3981

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3982 3983 3984
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3985
        alpha (float): The scale of output. Default 1.0.
3986
        name(str|None): A name for this layer(optional). If set None, the layer
3987
            will be named automatically.
G
guosheng 已提交
3988 3989

    Returns:
3990
        Variable: The product Tensor variable.
G
guosheng 已提交
3991

G
guosheng 已提交
3992 3993 3994
    Examples:
        .. code-block:: python

3995
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3996 3997
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3998

3999 4000
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4001

4002 4003
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4004

4005 4006
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4007 4008 4009 4010

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4011 4012
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4013

Y
ying 已提交
4014
            # x: [M], y: [N]
4015
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4016
    """
Y
ying 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4029
            y_shape = y_shape + [1]
Y
ying 已提交
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4046
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4047
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4048
    helper.append_op(
4049 4050 4051 4052
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4053 4054 4055
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4056
            'alpha': float(alpha),
S
sneaxiy 已提交
4057
        })
4058
    return out
4059 4060


4061
def topk(input, k, name=None):
Q
qingqing01 已提交
4062 4063 4064 4065
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4066
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4067 4068 4069 4070 4071 4072
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4094 4095 4096
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4097
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4098
                 of input.
4099
        name(str|None): A name for this layer(optional). If set None, the layer
4100
                       will be named automatically.
F
fengjiayi 已提交
4101
                       Default: None
Q
qingqing01 已提交
4102 4103

    Returns:
4104 4105 4106
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4107
        within the last dimension of input.
Q
qingqing01 已提交
4108

F
fengjiayi 已提交
4109 4110
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4111 4112 4113 4114 4115 4116 4117

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4118 4119
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4131
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4132
    """
Y
ying 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4142

Y
ying 已提交
4143
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4144

4145
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4146 4147
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4148
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4149

4150
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4151 4152
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4153

4154 4155 4156
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4157
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4158
                          the length of reference string.
4159
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4160
                                     calculating edit distance.
4161
        name (str): The name of this layer. It is optional.
4162

W
wanghaoshuang 已提交
4163
    Returns:
W
wanghaoshuang 已提交
4164
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4165 4166 4167 4168

    Examples:
        .. code-block:: python

T
tink2123 已提交
4169 4170
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4171
            cost = fluid.layers.edit_distance(input=x,label=y)
4172
    """
4173
    helper = LayerHelper("edit_distance", **locals())
4174

4175
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4176
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4177 4178
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4179 4180 4181 4182 4183

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4184
            attrs={"tokens": ignored_tokens})
4185 4186 4187 4188 4189
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4190
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4191
            attrs={"tokens": ignored_tokens})
4192 4193
        label = erased_label

4194
    # edit distance op
X
Xin Pan 已提交
4195 4196
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4197 4198 4199 4200
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4201 4202
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4203 4204
        attrs={"normalized": normalized})

4205
    return edit_distance_out, sequence_num
4206 4207 4208 4209 4210


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4211

Y
ying 已提交
4212 4213 4214 4215
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4233
        input.lod = [[4, 4]]
4234 4235 4236 4237 4238 4239 4240

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4241
        output.lod = [[2, 1]]
4242 4243 4244

    Args:

Y
ying 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4254
        name (str): The name of this layer. It is optional.
4255 4256

    Returns:
4257
        Variable: CTC greedy decode result. If all the sequences in result were
4258
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4259 4260 4261 4262 4263

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4264

4265
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4266
    """
4267
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4268
    _, topk_indices = topk(input, k=1)
4269 4270

    # ctc align op
X
Xin Pan 已提交
4271
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4272 4273 4274
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4275
        outputs={"Output": [ctc_out]},
4276 4277
        attrs={"merge_repeated": True,
               "blank": blank})
4278
    return ctc_out
4279 4280


W
Wu Yi 已提交
4281
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4282
    """
4283 4284
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4285
    to compute Connectionist Temporal Classification (CTC) loss.
4286 4287
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4288 4289 4290
    input tensor.

    Args:
4291
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4292 4293 4294 4295
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4296
       label (Variable): The ground truth of variable-length sequence,
4297 4298 4299
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4300 4301
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4302 4303 4304
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4305
         follewed by a mean_op.
W
Wu Yi 已提交
4306
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4307 4308

    Returns:
4309 4310
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4311 4312

    Examples:
4313

W
wanghaoshuang 已提交
4314
        .. code-block:: python
4315

4316 4317 4318
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4319 4320

    """
F
fengjiayi 已提交
4321
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4322 4323
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4324 4325 4326 4327 4328 4329
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4330 4331 4332 4333 4334
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4335
    return loss_out
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4351 4352 4353
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4354 4355 4356 4357 4358
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4359

4360
            out.lod  = [[0, 1, 3]]
4361 4362 4363 4364

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4365 4366 4367 4368 4369 4370 4371
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4372 4373 4374

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4375 4376

    Returns:
4377

4378 4379 4380 4381 4382
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4383
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4384
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4385 4386
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4387
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4388 4389 4390 4391 4392 4393
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4394 4395


4396 4397 4398 4399
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4400 4401 4402 4403 4404 4405
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4406
        num_neg_samples=None,
4407 4408 4409
        name=None,
        sampler="uniform",
        custom_dist=None,
4410 4411
        seed=0,
        is_sparse=False):
4412 4413 4414 4415 4416 4417 4418
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4419 4420
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4421
            sample is 1.0.
C
chengduo 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4431
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4432 4433
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4434 4435 4436
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4437
        custom_dist (float[]): A float[] with size=num_total_classes.
4438 4439 4440 4441
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4442
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4443

4444
    Returns:
Y
Yibing Liu 已提交
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4472 4473 4474 4475 4476 4477 4478 4479 4480

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4481

4482
    """
Y
Yang Yu 已提交
4483 4484 4485
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4486 4487

    dim = input.shape[1]
Y
Yang Yu 已提交
4488 4489 4490 4491 4492 4493
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4494
    inputs = {}
C
chengduo 已提交
4495 4496 4497 4498 4499 4500 4501
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4502 4503 4504
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4505

4506 4507 4508 4509
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4510 4511 4512 4513 4514 4515 4516

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4569 4570 4571 4572
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4573 4574 4575 4576 4577
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4578 4579
    attrs = {
        'num_total_classes': int(num_total_classes),
4580 4581
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4582 4583
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4584
    }
Y
Yang Yu 已提交
4585 4586 4587

    helper.append_op(
        type='nce',
C
chengduo 已提交
4588
        inputs=inputs,
Y
Yang Yu 已提交
4589 4590 4591 4592 4593 4594
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4595
    return cost / (num_neg_samples + 1)
4596 4597


C
chengduo 已提交
4598 4599
def hsigmoid(input,
             label,
4600
             num_classes,
C
chengduo 已提交
4601 4602
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4603
             name=None,
4604 4605 4606
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4607
             is_sparse=False):
W
weixing02 已提交
4608 4609
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4610
    process of language model. This operator organizes the classes into a
4611 4612
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4613 4614 4615 4616 4617 4618
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4619
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4620
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4631
    Args:
M
minqiyang 已提交
4632
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4633 4634 4635 4636
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4637 4638 4639
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4651 4652 4653 4654 4655 4656 4657
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4658
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4659 4660
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4661 4662

    Returns:
J
JiabinYang 已提交
4663
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4664 4665 4666 4667 4668

    Examples:

        .. code-block:: python

G
guosheng 已提交
4669 4670 4671
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4672 4673 4674 4675
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4676 4677
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4678
    dim = input.shape[1]
4679
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4680 4681 4682
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4683 4684 4685 4686
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4687 4688
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4689 4690 4691
    else:
        pass

J
JiabinYang 已提交
4692 4693
    weights = None

4694
    if not is_custom:
J
JiabinYang 已提交
4695 4696 4697 4698 4699 4700 4701 4702
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4703
            shape=[num_classes, dim],
J
JiabinYang 已提交
4704 4705
            is_bias=False,
            dtype=input.dtype)
4706 4707 4708
    inputs = {
        "X": input,
        "W": weights,
4709 4710
        "PTable": path_table,
        "PathCode": path_code,
4711 4712
        "Label": label
    }
W
weixing02 已提交
4713
    if helper.bias_attr:
4714
        if not is_custom:
J
JiabinYang 已提交
4715 4716
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4717
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4718 4719 4720 4721 4722 4723
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4724
                shape=[num_classes, 1],
J
JiabinYang 已提交
4725 4726 4727
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4728 4729
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4730
        inputs=inputs,
W
weixing02 已提交
4731 4732
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4733 4734
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4735 4736 4737
    return out


Y
fix ci.  
ying 已提交
4738
def transpose(x, perm, name=None):
Y
ying 已提交
4739 4740 4741 4742 4743 4744 4745
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4746 4747 4748
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4749 4750 4751 4752 4753 4754 4755

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4756
            # use append_batch_size=False to avoid prepending extra
4757
            # batch size in shape
4758
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4759
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4760
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4761 4762
    """

Y
fix ci.  
ying 已提交
4763
    if len(perm) != len(x.shape):
Y
ying 已提交
4764 4765 4766
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4767 4768 4769 4770 4771 4772
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4773 4774

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4775 4776
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4777
    helper.append_op(
4778
        type='transpose2',
Y
fix ci.  
ying 已提交
4779
        inputs={'X': [x]},
4780 4781
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4782 4783
        attrs={'axis': perm})
    return out
4784 4785


4786 4787 4788 4789 4790 4791 4792
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4793
    """
4794 4795 4796 4797 4798 4799 4800
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4829 4830 4831 4832 4833 4834 4835 4836 4837
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4838 4839 4840
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4841 4842 4843 4844 4845
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4873 4874 4875
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4888
            output.dims = {8, 8}
4889

4890
            output.lod = [[4, 4]]
4891

D
dzhwinter 已提交
4892
     Examples:
4893 4894 4895

        .. code-block:: python

4896 4897
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4898 4899

    """
W
wanghaoshuang 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908 4909

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4910 4911 4912 4913 4914 4915 4916
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4917
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4918
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4919
    helper.append_op(
4920
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4921
    return out
4922 4923


Y
yuyang18 已提交
4924
@templatedoc()
4925
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4926 4927
    """
    ${comment}
4928 4929

    Args:
Y
yuyang18 已提交
4930
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4931 4932
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4933 4934 4935 4936 4937
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4938
        ${out_comment}.
4939 4940

    Examples:
Y
yuyang18 已提交
4941 4942 4943 4944
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4945 4946 4947 4948 4949 4950
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4951
    out = helper.create_variable_for_type_inference(dtype)
4952 4953 4954 4955 4956
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4957
    return helper.append_activation(out)
4958 4959


Y
yuyang18 已提交
4960
@templatedoc()
4961 4962
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4963 4964 4965 4966 4967 4968 4969
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4970 4971

    Args:
Y
yuyang18 已提交
4972 4973
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4974 4975

    Returns:
Y
yuyang18 已提交
4976
        ${out_comment}.
4977 4978
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4979 4980 4981 4982 4983

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4984
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4985 4986 4987 4988 4989 4990
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4991 4992


4993 4994 4995
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4996
                               ignore_index=-100,
4997 4998
                               numeric_stable_mode=False,
                               return_softmax=False):
4999 5000
    """
    **Softmax With Cross Entropy Operator.**
5001

5002 5003 5004 5005
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5006

5007 5008 5009
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5010

5011 5012 5013
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5014

5015
    The equation is as follows:
5016

5017
    1) Hard label (one-hot label, so every sample has exactly one class)
5018

5019 5020 5021 5022
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5023

5024 5025 5026
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5027

5028 5029 5030 5031
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5032 5033 5034
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5035

S
sneaxiy 已提交
5036 5037 5038 5039 5040 5041 5042 5043
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5044 5045 5046 5047 5048 5049 5050 5051
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5052 5053
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
5054
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
5055 5056 5057
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5058 5059 5060
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5061
                                    stable algorithm. Default: False
5062
        return_softmax (bool): A flag indicating whether to return the softmax
5063
                               along with the cross entropy loss. Default: False
5064

5065
    Returns:
5066 5067 5068 5069
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5070
                              2-D tensor with shape [N x K].
5071 5072 5073 5074 5075 5076 5077

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5078 5079
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5080 5081
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5082 5083
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5084 5085 5086 5087 5088 5089
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5090 5091 5092 5093 5094
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5095 5096 5097 5098

    if return_softmax:
        return loss, softmax

5099 5100 5101 5102 5103
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5104 5105
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5106
    For each instance, it computes the smooth L1 loss element by element first
5107
    and then sums all the losses. So the shape of ouput Variable is
5108
    [batch_size, 1].
5109

5110 5111
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5112
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5113
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5114
            L1 loss op with same shape as :attr:`x`.
5115
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5116 5117
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5118
            by this tensor element by element.
5119
        outside_weight (Variable|None): A tensor with rank at least 2. This
5120 5121
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5122
            element by element.
5123
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5124 5125
           scalar with default value 1.0.

5126
    Returns:
5127
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5128 5129 5130 5131 5132

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5133 5134
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5135
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5136
            out = fluid.layers.smooth_l1(x=fc, y=label)
5137
    """
5138

5139
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5140 5141
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5154 5155 5156 5157


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5158
    This layer creates the one-hot representations for input indices.
5159 5160

    Args:
Y
Yibing Liu 已提交
5161 5162
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5163 5164

    Returns:
Y
Yibing Liu 已提交
5165
        Variable: The one-hot representations of input.
5166 5167

    Examples:
C
caoying03 已提交
5168
        .. code-block:: python
5169

Y
Yibing Liu 已提交
5170 5171
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5172 5173
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5174
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5175 5176 5177 5178 5179 5180
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5181 5182


Y
Yu Yang 已提交
5183
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5184
    """
Y
yi.wu 已提交
5185 5186 5187
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5188 5189 5190 5191 5192 5193

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5194 5195
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5196 5197 5198 5199 5200 5201

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5202 5203
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5204 5205
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5206 5207 5208 5209 5210
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5211
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5212
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5213 5214
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5215 5216
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5217 5218 5219
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5220 5221


5222
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5223
    """
C
caoying03 已提交
5224 5225
    Gives a new shape to the input Tensor without changing its data.

5226 5227 5228 5229 5230
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5231

5232
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5233

5234 5235 5236 5237
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5238
    2. 0 means the actual dimension value is going to be copied from the
5239 5240 5241 5242
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5243 5244

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5245
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5246
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5247

5248
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5249 5250
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5251 5252
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5253
    dimensions.
C
caoying03 已提交
5254

5255
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5256 5257 5258 5259
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5260 5261

    Args:
5262
        x(variable): The input tensor.
C
caoying03 已提交
5263 5264
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5265 5266 5267 5268 5269
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5270 5271
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5272 5273 5274 5275 5276 5277 5278
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5279
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5280

5281
    Returns:
G
guosheng 已提交
5282 5283 5284 5285
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5286

X
Xin Pan 已提交
5287 5288 5289
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5290 5291
    Examples:
        .. code-block:: python
G
guosheng 已提交
5292

5293
            data = fluid.layers.data(
5294
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5295
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5296
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5297 5298 5299
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5300
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5301 5302 5303 5304 5305
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5306

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5322
    helper = LayerHelper("reshape2", **locals())
5323 5324
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5325
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5326
    helper.append_op(
5327
        type="reshape2",
X
Xin Pan 已提交
5328
        inputs=inputs,
D
dzhwinter 已提交
5329
        attrs={"shape": shape},
5330 5331
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5332

D
dzhwinter 已提交
5333
    return helper.append_activation(out)
5334

5335

5336
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5337
    """
M
minqiyang 已提交
5338 5339 5340
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5341
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5342

Y
Yibing Liu 已提交
5343 5344
    Examples:
    Case 1:
M
minqiyang 已提交
5345
      Given
Y
Yibing Liu 已提交
5346 5347 5348 5349 5350 5351 5352 5353
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5354
        and
Y
Yibing Liu 已提交
5355 5356 5357
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5358

Y
Yibing Liu 已提交
5359
    Args:
5360
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5361
        axes (list): List of integers, indicating the dimensions to be squeezed.
5362
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5363 5364 5365 5366 5367 5368 5369 5370

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5371
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5372 5373
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5374 5375
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5376
    helper.append_op(
5377
        type="squeeze2",
5378
        inputs={"X": input},
Y
Yibing Liu 已提交
5379
        attrs={"axes": axes},
5380 5381
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5382

5383 5384 5385
    return out


5386
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5387
    """
M
minqiyang 已提交
5388 5389 5390
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5391

M
minqiyang 已提交
5392 5393
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5394
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5395

Y
Yibing Liu 已提交
5396
    Args:
5397
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5398
        axes (list): List of integers, indicating the dimensions to be inserted.
5399
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5400 5401 5402 5403 5404 5405 5406 5407

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5408
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5409 5410
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5411 5412
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5413
    helper.append_op(
5414
        type="unsqueeze2",
5415
        inputs={"X": input},
Y
Yibing Liu 已提交
5416
        attrs={"axes": axes},
5417 5418
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5419

5420 5421
    return out

5422

Y
yangyaming 已提交
5423
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5424
    """
Y
Yibing Liu 已提交
5425
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5426 5427 5428 5429
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5430
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5431 5432 5433 5434 5435 5436

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5437
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5438 5439 5440
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5441
            target_lod: [4, 2]
Y
yangyaming 已提交
5442 5443

            then we get a 1-level LoDTensor:
5444
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5445 5446 5447 5448 5449 5450
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5451
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5452 5453 5454 5455
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5456
                y.data = [[2, 4]]
Y
yangyaming 已提交
5457 5458 5459
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5460
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5461 5462 5463 5464 5465 5466
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5467
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5468 5469 5470 5471
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5472
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5473 5474 5475 5476
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5477
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5478 5479 5480 5481 5482
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5483
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5484
                           from :attr:`y`.
Y
yangyaming 已提交
5485
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5486
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5487 5488

    Returns:
Y
Yibing Liu 已提交
5489
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5490 5491

    Raises:
Y
Yibing Liu 已提交
5492
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5502
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5528
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5557 5558
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5571 5572 5573
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5587 5588 5589 5590


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5591
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5592
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5593

G
guosheng 已提交
5594 5595 5596 5597
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5620
                         The length of :attr:paddings must be
G
guosheng 已提交
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5631

G
guosheng 已提交
5632 5633 5634 5635 5636 5637
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5638
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5639 5640 5641 5642 5643 5644 5645
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5646 5647


C
chengduo 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5718
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5719 5720 5721 5722 5723 5724 5725 5726 5727
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5728 5729 5730 5731 5732 5733 5734
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5735 5736
    called label-smoothing regularization (LSR).

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5760
                              be :math:`(1, class\_num)`.
5761 5762
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5763
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5783
    smooth_label = helper.create_variable_for_type_inference(dtype)
5784 5785 5786 5787 5788 5789 5790
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5791 5792


W
wopeizl 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5829 5830


J
jerrywgz 已提交
5831 5832 5833 5834 5835 5836
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5837 5838
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5855 5856 5857
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5858 5859 5860 5861 5862 5863
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5864
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5905 5906
        .. code-block:: python

W
whs 已提交
5907 5908 5909 5910
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5911
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5912 5913 5914 5915 5916 5917
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5918 5919


5920 5921 5922 5923
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5924 5925
                 resample='BILINEAR',
                 actual_shape=None):
5926
    """
Q
qiaolongfei 已提交
5927
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5928

5929
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5930 5931 5932
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5933

5934
        'BILINEAR' : Bilinear interpolation
5935
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5936

5937
    Args:
5938
        input (Variable): The input tensor of image resize layer,
5939 5940
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5941
        out_shape(list|tuple|Variable|None): Output shape of image resize
5942 5943
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5944
        scale(float|None): The multiplier for the input height or width.
5945 5946 5947
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5948 5949
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5950
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
5951
                       currently.
5952
                       Default: 'BILINEAR'
5953 5954 5955
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
5956
                                :attr:`out_shape` and :attr:`scale` specifying
5957 5958 5959 5960 5961 5962 5963
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
5964 5965
                                constructing stage.
                                Default: None
5966 5967

    Returns:
Q
update  
qiaolongfei 已提交
5968 5969
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5970

5971 5972 5973
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
5974
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
5975 5976 5977 5978
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5979 5980 5981
    Examples:
        .. code-block:: python

5982
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5983
    """
5984 5985 5986 5987
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5988 5989
    if resample not in resample_methods:
        raise ValueError(
5990
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5991
        )
5992
    resample_type = resample_methods[resample]
5993
    if out_shape is None and scale is None:
5994
        raise ValueError("One of out_shape and scale must not be None.")
5995
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
5996
    dtype = helper.input_dtype()
5997 5998 5999 6000

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6001 6002 6003
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6004
    if out_shape is not None:
6005 6006 6007 6008
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6009
            inputs['OutSize'] = out_shape
6010 6011 6012 6013 6014 6015 6016 6017
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6018 6019 6020 6021
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6022 6023 6024 6025 6026
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6027
    out = helper.create_variable_for_type_inference(dtype)
6028
    helper.append_op(
6029
        type='{}_interp'.format(resample_type),
6030
        inputs=inputs,
6031
        outputs={"Out": out},
6032 6033 6034
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6035
    return out
F
stash  
fengjiayi 已提交
6036 6037


6038
@templatedoc(op_type="bilinear_interp")
6039 6040 6041 6042 6043
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6044
    """
6045 6046
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6047 6048
    in priority order.

6049 6050 6051 6052
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6053 6054
    again in the other direction.

6055
    For details of bilinear interpolation, please refer to Wikipedia:
6056
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6057 6058 6059 6060 6061

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6062

Y
yuyang18 已提交
6063 6064 6065 6066 6067
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6068 6069 6070
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6071
                                :attr:`out_shape` and :attr:`scale` specifying
6072 6073 6074 6075 6076 6077 6078
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6079 6080
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6081 6082 6083

    Returns:
        ${out_comment}.
6084 6085 6086 6087 6088

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6089 6090
    """

6091
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6092 6093


6094
@templatedoc(op_type="nearest_interp")
6095 6096 6097 6098 6099
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6100
    """
6101
    Resize input by performing nearest neighbor interpolation in both the
6102 6103
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6104 6105
    out_shape and scale in priority order.

6106
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6107
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6108 6109 6110 6111 6112

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6113

Y
yuyang18 已提交
6114 6115 6116 6117 6118
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6119 6120 6121
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6122
                                :attr:`out_shape` and :attr:`scale` specifying
6123 6124 6125 6126 6127 6128 6129
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6130 6131
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6132 6133 6134

    Returns:
        ${out_comment}.
6135 6136 6137 6138 6139

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6140 6141
    """

6142
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6143 6144 6145 6146


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6147 6148 6149
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6150 6151 6152 6153 6154 6155 6156
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6157
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6158

6159
    Returns:
Q
update  
qiaolongfei 已提交
6160
        Variable: The output is a 4-D tensor of the shape
6161
        (num_batches, channls, out_h, out_w).
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6172 6173 6174
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6175 6176 6177
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6178 6179
def gather(input, index):
    """
Q
qiaolongfei 已提交
6180 6181
    **Gather Layer**

6182
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6183 6184 6185 6186
    of X indexed by `index` and concatenate them together.

    .. math::

6187
        Out = X[Index]
W
whs 已提交
6188 6189 6190 6191 6192 6193 6194


    .. code-block:: text


                Given:

6195 6196
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6207
        input (Variable): The source input with rank>=1.
W
whs 已提交
6208 6209 6210 6211 6212 6213
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6214

W
whs 已提交
6215 6216 6217 6218 6219 6220
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6221
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6222 6223 6224 6225 6226 6227 6228 6229
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6261
    out = helper.create_variable_for_type_inference(dtype)
6262 6263 6264 6265 6266 6267 6268 6269 6270
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6321
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6322 6323 6324 6325 6326 6327 6328 6329 6330
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6344

6345 6346 6347
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6348
    """
F
stash  
fengjiayi 已提交
6349
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6350
    dtype = x.dtype
X
Xin Pan 已提交
6351
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6352
    if seed is None:
6353
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6354
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6355
    if isinstance(seed, int):
F
fengjiayi 已提交
6356 6357 6358 6359 6360
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6361 6362 6363 6364
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6365
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6366 6367
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6368 6369
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6370
    return out
W
whs 已提交
6371 6372


6373
def log(x, name=None):
W
wanghaoshuang 已提交
6374 6375 6376 6377 6378
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6379
        Out = \\ln(x)
W
wanghaoshuang 已提交
6380 6381

    Args:
6382
        x (Variable): Input tensor.
6383 6384
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6385 6386 6387 6388 6389 6390 6391 6392

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6393
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6394 6395
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6396
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6397
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6398
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6399 6400 6401
    return out


6402
def relu(x, name=None):
W
wanghaoshuang 已提交
6403 6404
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6405
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6406 6407 6408 6409
    the tensor elementwise.

    .. math::

6410
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6411 6412

    Args:
6413
        x (Variable): The input tensor.
6414 6415
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6416 6417 6418 6419 6420 6421 6422 6423

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6424
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6425 6426
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6427
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6428
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6429
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6430
    return out
6431 6432


C
chengduo 已提交
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6474 6475 6476
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6477 6478 6479 6480
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6481
    .. math::
6482 6483

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6484

6485
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6486 6487 6488 6489 6490
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6491
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6492
                           Its shape should be the same as input.
6493
        num_classes (int): The possible number of labels.
W
whs 已提交
6494 6495 6496 6497

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6498
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6499 6500 6501 6502

    Examples:

        .. code-block:: python
6503

W
whs 已提交
6504 6505 6506 6507
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6508 6509 6510
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6511 6512
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6513 6514
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6515
        outputs={
W
whs 已提交
6516 6517 6518
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6519 6520 6521
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6596
            isinstance(shape, Variable)):
6597 6598 6599 6600 6601
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6602
    out = helper.create_variable_for_type_inference(x.dtype)
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6620 6621


W
whs 已提交
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6639

W
whs 已提交
6640
              out_shape = [2, 3, 5, 5]
6641

W
whs 已提交
6642
          Step 1:
6643

W
whs 已提交
6644 6645 6646
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6647

W
whs 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6718
            isinstance(out_shape, Variable)):
W
whs 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6740 6741 6742 6743 6744 6745 6746 6747
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6748

6749 6750
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6751

6752 6753 6754 6755
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6756

6757 6758 6759 6760 6761
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6762 6763 6764

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6800
    out = helper.create_variable_for_type_inference("float32")
6801 6802 6803 6804 6805 6806 6807 6808

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6809 6810


M
minqiyang 已提交
6811 6812
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6813
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6814
    which compares left score and right score passed in.
M
minqiyang 已提交
6815
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6816 6817 6818 6819 6820 6821

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6822
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6823 6824
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6825
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6826 6827 6828
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6829
       Variable: The ranking loss.
M
minqiyang 已提交
6830
    Raises:
M
minqiyang 已提交
6831
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6832 6833 6834 6835 6836 6837 6838
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6839
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6840 6841 6842 6843 6844 6845
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6846 6847
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6873

W
whs 已提交
6874 6875
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6876

W
whs 已提交
6877
      Case 0:
M
minqiyang 已提交
6878

W
whs 已提交
6879 6880 6881
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6882

W
whs 已提交
6883 6884 6885
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6886

W
whs 已提交
6887
      Case 1:
M
minqiyang 已提交
6888

W
whs 已提交
6889 6890
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6891

W
whs 已提交
6892 6893 6894
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6895

W
whs 已提交
6896
      Case 2:
M
minqiyang 已提交
6897

W
whs 已提交
6898 6899
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6900

W
whs 已提交
6901 6902 6903
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6904 6905


W
whs 已提交
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6932
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6959 6960 6961 6962 6963

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6964 6965
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
6966 6967
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6968
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
6989 6990 6991 6992 6993

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
6994 6995
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
6996 6997
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6998
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7019 7020 7021 7022 7023

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7024 7025
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7026 7027
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7028
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7050 7051 7052 7053 7054

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7055
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7056
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7057 7058
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7059
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7082 7083 7084 7085 7086

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7087 7088
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7089 7090
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7091
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7113 7114 7115 7116 7117

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7118 7119
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7120 7121
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7122
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7123 7124 7125 7126 7127 7128 7129 7130
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7131 7132 7133 7134
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7135
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7136 7137 7138

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7139 7140
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                       weight (alpha).
J
jerrywgz 已提交
7141 7142 7143 7144
        mode (string): The mode for weight sharing. It supports all, channel
                       and element. all: all elements share same weight
                       channel:elements in a channel share same weight
                       element:each element has a weight
J
jerrywgz 已提交
7145
        name(str|None): A name for this layer(optional). If set None, the layer
J
jerrywgz 已提交
7146
                       will be named automatically.
J
jerrywgz 已提交
7147 7148 7149 7150 7151 7152 7153 7154

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7155
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7169
        attr=helper.param_attr,
J
jerrywgz 已提交
7170 7171 7172 7173
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7174
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7194
    Returns:
7195
        output(${out_type}): ${out_comment}
7196 7197 7198 7199 7200 7201 7202

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7203 7204
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7224
    Returns:
7225
        output(${out_type}): ${out_comment}
7226 7227 7228 7229 7230 7231 7232

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7233 7234
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7235
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7253
    Returns:
7254
        output(${out_type}): ${out_comment}
7255 7256 7257 7258 7259 7260 7261

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7262 7263
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7264
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7265 7266 7267 7268 7269 7270 7271 7272
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7286

7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7297 7298
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7314
        ValueError: If axis is not in range [0, rank(x)].
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7331 7332
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7333
    helper.append_op(
7334
        type='flatten2',
7335
        inputs={"X": x},
7336 7337
        outputs={'Out': out,
                 'XShape': x_shape},
7338 7339
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7340 7341


C
chenweihang 已提交
7342
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7343
    """
C
chenweihang 已提交
7344
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7345
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7346 7347
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7348

C
chenweihang 已提交
7349 7350 7351 7352
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7353
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7354 7355 7356 7357 7358 7359
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7360
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7361 7362 7363
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7364 7365 7366
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7378 7379
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7380 7381 7382 7383 7384 7385
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7386
    return out
7387

7388

S
sneaxiy 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7398

S
sneaxiy 已提交
7399
    .. math::
7400

S
sneaxiy 已提交
7401 7402 7403
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7404
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7405 7406 7407 7408
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7409 7410 7411
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7412 7413
    Returns:
        Variable: The output sequence mask.
7414

S
sneaxiy 已提交
7415 7416
    """

Q
qingqing01 已提交
7417
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7418
    if name is None:
X
Xin Pan 已提交
7419
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7420
    else:
X
Xin Pan 已提交
7421
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7422

Q
qingqing01 已提交
7423 7424 7425
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7426 7427
        outputs={'Y': out},
        attrs={
7428
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7429 7430 7431
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7432 7433


X
Xin Pan 已提交
7434
def stack(x, axis=0):
S
sneaxiy 已提交
7435 7436 7437 7438
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7439 7440 7441 7442 7443 7444 7445

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7446
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7447
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7448 7449

    Args:
7450
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7451
        axis (int|None): The axis along which all inputs are stacked.
7452

S
sneaxiy 已提交
7453 7454
    Returns:
        Variable: The stacked variable.
7455

S
sneaxiy 已提交
7456 7457
    """

X
Xin Pan 已提交
7458 7459 7460 7461 7462 7463
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7464
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7465
    helper.append_op(
S
sneaxiy 已提交
7466 7467
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7468

X
Xin Pan 已提交
7469
    return out
D
dzhwinter 已提交
7470 7471 7472 7473 7474 7475 7476


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7477

D
dzhwinter 已提交
7478 7479 7480
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7481
    raised.
D
dzhwinter 已提交
7482 7483

    Args:
M
minqiyang 已提交
7484
        x (Variable): Input variable.
D
dzhwinter 已提交
7485 7486
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7487

D
dzhwinter 已提交
7488 7489
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7490

D
dzhwinter 已提交
7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7502
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7503 7504 7505 7506 7507 7508 7509 7510

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7523

W
whs 已提交
7524 7525 7526 7527
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7528

W
whs 已提交
7529
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7530

W
whs 已提交
7531
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7532

W
whs 已提交
7533 7534 7535 7536
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7537

W
whs 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7554
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7555 7556 7557 7558 7559 7560
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7561 7562


G
fix  
gongweibao 已提交
7563 7564 7565
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7566
@templatedoc()
G
fix  
gongweibao 已提交
7567 7568 7569 7570 7571 7572 7573 7574 7575
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7576
    ${comment}
G
fix  
gongweibao 已提交
7577 7578

    Args:
G
gongweibao 已提交
7579 7580 7581
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7582
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7583 7584 7585
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7586 7587
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7588
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7589 7590 7591 7592

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7593
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7610 7611


G
gongweibao 已提交
7612
@templatedoc()
X
Xin Pan 已提交
7613
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7614
    """
G
gongweibao 已提交
7615
    ${comment}
G
fix  
gongweibao 已提交
7616 7617

    Args:
G
gongweibao 已提交
7618 7619 7620 7621
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7622 7623 7624
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7625
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7626 7627 7628 7629

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7630
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7641
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7642 7643 7644 7645 7646
        })

    return out


G
gongweibao 已提交
7647
@templatedoc()
G
fix  
gongweibao 已提交
7648
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7649
    """
G
gongweibao 已提交
7650
    ${comment}
G
fix  
gongweibao 已提交
7651 7652

    Args:
G
gongweibao 已提交
7653 7654 7655 7656
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7657
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7658 7659

    Returns:
G
gongweibao 已提交
7660
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7661 7662 7663 7664

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7665
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7677
@templatedoc()
G
fix  
gongweibao 已提交
7678 7679 7680 7681 7682 7683 7684 7685 7686
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7687
    ${comment}
G
fix  
gongweibao 已提交
7688 7689

    Args:
G
gongweibao 已提交
7690 7691
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7692
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7693 7694 7695 7696
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7697
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7698 7699

    Returns:
G
gongweibao 已提交
7700
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7701 7702 7703
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7723
@templatedoc()
X
Xin Pan 已提交
7724
def sum(x):
G
fix  
gongweibao 已提交
7725
    """
G
gongweibao 已提交
7726
    ${comment}
G
fix  
gongweibao 已提交
7727 7728

    Args:
G
gongweibao 已提交
7729
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7730 7731

    Returns:
G
gongweibao 已提交
7732
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7733 7734 7735
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7736 7737
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7738 7739 7740 7741
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7742
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7743 7744 7745 7746

    return out


G
gongweibao 已提交
7747
@templatedoc()
G
fix  
gongweibao 已提交
7748 7749
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7750
    ${comment}
G
fix  
gongweibao 已提交
7751 7752

    Args:
G
gongweibao 已提交
7753 7754 7755 7756
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7757 7758

    Returns:
G
gongweibao 已提交
7759
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7760 7761 7762 7763

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7764 7765
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7777
@templatedoc()
G
fix  
gongweibao 已提交
7778 7779
def shape(input):
    """
G
gongweibao 已提交
7780
    ${comment}
G
fix  
gongweibao 已提交
7781 7782

    Args:
G
gongweibao 已提交
7783
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7784 7785

    Returns:
G
gongweibao 已提交
7786
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7787 7788 7789 7790

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7791 7792
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7793
    helper.append_op(
G
fix  
gongweibao 已提交
7794
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7795 7796

    return out
G
merge  
gongweibao 已提交
7797 7798


S
sneaxiy 已提交
7799 7800 7801 7802 7803 7804 7805 7806
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7807 7808
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7809
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7810 7811 7812
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7813

S
sneaxiy 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7825
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7826 7827 7828 7829 7830 7831 7832 7833
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7834
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7835
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7836 7837 7838 7839 7840 7841

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7842
    if name is None:
X
Xin Pan 已提交
7843
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7844 7845 7846
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7857
    return helper.append_activation(out)
S
sneaxiy 已提交
7858 7859


X
Xin Pan 已提交
7860
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7861 7862 7863
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7864
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7865 7866 7867
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7868
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7869 7870 7871
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7872
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7873 7874 7875
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7876
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7877 7878 7879
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7880
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7881 7882 7883
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7884
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7896 7897
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7898
        ])
M
minqiyang 已提交
7899 7900


7901
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7902 7903
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7904 7905
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7906 7907 7908

    if out is None:
        if name is None:
X
Xin Pan 已提交
7909
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7925
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7937 7938 7939 7940 7941 7942 7943 7944 7945

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
7946 7947 7948 7949 7950 7951 7952
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7953
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7965 7966 7967 7968 7969 7970 7971 7972 7973

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
7974 7975 7976 7977 7978 7979 7980
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7981
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
7993 7994 7995 7996 7997 7998 7999 8000 8001

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8002 8003 8004 8005 8006 8007 8008
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8009
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8020 8021 8022 8023 8024 8025 8026

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8027 8028 8029 8030
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8046 8047 8048 8049 8050 8051 8052

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8053 8054 8055 8056 8057
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8058 8059 8060 8061
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8085 8086 8087 8088 8089 8090 8091

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8092 8093 8094 8095 8096
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8097 8098 8099 8100
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8101 8102 8103 8104 8105 8106 8107 8108

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8127
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8157
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8158 8159 8160 8161 8162 8163 8164 8165 8166
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8167 8168
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8191
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8221
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8222 8223 8224 8225 8226 8227 8228 8229 8230 8231
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8232 8233


J
JiabinYang 已提交
8234
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8235
    """
J
JiabinYang 已提交
8236
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8237 8238 8239

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8240
    The attr blocksize indicates the input block size.
8241 8242

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8243
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8244 8245

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8246
    (but keeping all data)
J
JiabinYang 已提交
8247

J
JiabinYang 已提交
8248
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8249
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8250 8251 8252 8253 8254
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8255
    Args:
J
JiabinYang 已提交
8256
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8257
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8258 8259

    Returns:
J
JiabinYang 已提交
8260
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8261 8262

    Raises:
J
JiabinYang 已提交
8263
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8264 8265 8266 8267 8268 8269

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8270
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8271
                x=data, blocksize=2)
J
JiabinYang 已提交
8272 8273
    """

J
JiabinYang 已提交
8274
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8275

J
JiabinYang 已提交
8276 8277
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8278 8279

    if name is None:
J
JiabinYang 已提交
8280 8281
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8282 8283 8284 8285 8286
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8287
        type="space_to_depth",
J
JiabinYang 已提交
8288
        inputs={"X": x},
J
JiabinYang 已提交
8289
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8290
        outputs={"Out": out})
J
JiabinYang 已提交
8291 8292
    return out

J
JiabinYang 已提交
8293

S
sneaxiy 已提交
8294 8295
@templatedoc()
def sequence_reverse(x, name=None):
8296
    """
S
sneaxiy 已提交
8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8308
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8319 8320


8321 8322 8323 8324 8325 8326
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8327

8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8347
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8360 8361


B
barrierye 已提交
8362
def similarity_focus(input, axis, indexes, name=None):
8363
    """
B
barrierye 已提交
8364
    SimilarityFocus Operator
B
barrierye 已提交
8365 8366

    Generate a similarity focus mask with the same shape of input using the following method:
8367 8368 8369
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8370
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8371 8372 8373 8374 8375 8376 8377
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8378
       each index.
B
barrierye 已提交
8379 8380 8381 8382
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8432
    Args:
8433
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8434
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8435
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8436
            1, 2 or 3.
B
barrierye 已提交
8437
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8438 8439

    Returns:
8440
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8441
            as the input.
8442

B
barrierye 已提交
8443 8444 8445
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8446 8447
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8460 8461 8462 8463 8464
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8465 8466 8467 8468 8469 8470 8471
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8472 8473


M
minqiyang 已提交
8474 8475
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8476 8477
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8478 8479
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8518
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8519
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8520 8521 8522 8523 8524 8525 8526 8527 8528

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8529 8530
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8531 8532
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8533 8534 8535 8536 8537 8538 8539
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8540 8541


D
dengkaipeng 已提交
8542
@templatedoc()
8543 8544
def grid_sampler(x, grid, name=None):
    """
8545
    This operation samples input X by using bilinear interpolation based on
8546
    flow field grid, which is usually gennerated by affine_grid. The grid of
8547 8548 8549 8550
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8551
    interpolation value of 4 nearest corner points.
8552 8553 8554 8555 8556 8557 8558 8559

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8560
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8590 8591

    Args:
8592 8593 8594
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8595 8596

    Returns:
8597
        out(Variable): Output of shape [N, C, H, W] data samples input X
8598 8599 8600 8601 8602 8603 8604 8605 8606
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8607 8608 8609 8610 8611 8612 8613 8614 8615
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8616
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8617 8618
    ipts = {'X': x, 'Grid': grid}

8619
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8620 8621 8622
    return out


G
gmcather 已提交
8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8727
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8728

Q
Qiao Longfei 已提交
8729
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8730 8731 8732
    For example:

    .. math::
8733
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8734

Q
Qiao Longfei 已提交
8735
    In this formula:
8736 8737
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8738
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8739
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8740 8741 8742
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8743 8744
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8745 8746 8747
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8748
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8749
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8750
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8751 8752 8753 8754
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8755
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8756 8757 8758 8759

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8760
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8761 8762
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8763
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8764 8765 8766 8767

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8768
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)