multi_devices_graph_builder.cc 16.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16 17
#include <utility>
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
18
#include "paddle/fluid/framework/details/computation_op_handle.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
20
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
21
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
T
wip  
typhoonzero 已提交
22
#include "paddle/fluid/framework/details/send_op_handle.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
24 25 26 27

#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
Y
Yu Yang 已提交
28

Y
Yu Yang 已提交
29 30 31
#include <string>
#include <vector>

Y
Yu Yang 已提交
32 33 34
namespace paddle {
namespace framework {
namespace details {
Y
Yu Yang 已提交
35 36

#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
37 38 39 40
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
C
chengduoZH 已提交
41
    const std::vector<Scope *> &local_scopes,
Y
yuyang18 已提交
42
    platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
Y
Yu Yang 已提交
43 44 45
    : loss_var_name_(loss_var_name),
      places_(places),
      local_scopes_(local_scopes),
C
chengduoZH 已提交
46
      nccl_ctxs_(nccl_ctxs),
Y
yuyang18 已提交
47
      strategy_(strategy) {
Y
Yu Yang 已提交
48 49 50 51 52
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
    const std::vector<platform::Place> &places,
    const std::string &loss_var_name,
    const std::unordered_set<std::string> &params,
Y
yuyang18 已提交
53
    const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
Y
Yu Yang 已提交
54 55
    : loss_var_name_(loss_var_name),
      places_(places),
C
chengduoZH 已提交
56
      local_scopes_(local_scopes),
Y
yuyang18 已提交
57
      strategy_(strategy) {
Y
Yu Yang 已提交
58
#endif
Y
Yu Yang 已提交
59 60 61 62 63
  for (auto &p : params) {
    grad_names_.insert(GradVarName(p));
  }
}

Y
Yu Yang 已提交
64 65
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
                                                const OpDesc &op,
Y
Yu Yang 已提交
66 67
                                                size_t place_id) const {
  auto p = places_[place_id];
T
wip  
typhoonzero 已提交
68
  auto *op_handle = result->ops_.back().get();
X
Xin Pan 已提交
69 70
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
71

Y
Yu Yang 已提交
72 73 74
  for (auto &each_var_name : op.InputArgumentNames()) {
    VarHandle *var =
        CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
75 76 77
    op_handle->AddInput(var);
  }

Y
Yu Yang 已提交
78 79
  for (auto &each_var_name : op.OutputArgumentNames()) {
    CreateOpOutput(result, op_handle, each_var_name, p, place_id);
T
wip  
typhoonzero 已提交
80 81
  }
}
Y
fix pe  
Yancey1989 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
    const ProgramDesc &program) const {
  std::vector<std::string> send_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "send_vars" || op->Type() == "send") {
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
    const ProgramDesc &program) const {
  std::vector<std::string> recv_vars;
  for (auto *op : program.Block(0).AllOps()) {
    if (op->Type() == "recv" || op->Type() == "send") {
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

bool MultiDevSSAGraphBuilder::IsDistTrainOp(
    const OpDesc &op, const std::vector<std::string> &send_vars,
    const std::vector<std::string> &recv_vars) const {
  if (send_vars.size() == 0 || recv_vars.size() == 0) {
T
typhoonzero 已提交
115 116 117
    return false;
  }

Y
Yu Yang 已提交
118 119 120 121
  /**
   * Check any of opvars contains `.block` and in sendvars
   */
  auto checker = [](const std::vector<std::string> &opvars,
Y
fix pe  
Yancey1989 已提交
122
                    const std::vector<std::string> &rpc_vars) -> bool {
T
typhoonzero 已提交
123 124
    for (auto &var : opvars) {
      if (var.find(".block") != std::string::npos &&
Y
fix pe  
Yancey1989 已提交
125
          std::find(rpc_vars.begin(), rpc_vars.end(), var) != rpc_vars.end()) {
Y
Yu Yang 已提交
126
        return true;
T
typhoonzero 已提交
127 128
      }
    }
Y
Yu Yang 已提交
129
    return false;
T
typhoonzero 已提交
130 131
  };

Y
fix pe  
Yancey1989 已提交
132 133 134
  if (op.Type() == "split" || op.Type() == "split_byref" ||
      op.Type() == "split_selected_rows") {
    return checker(op.OutputArgumentNames(), send_vars);
T
typhoonzero 已提交
135
  } else if (op.Type() == "concat") {
Y
fix pe  
Yancey1989 已提交
136
    return checker(op.InputArgumentNames(), recv_vars);
T
typhoonzero 已提交
137
  }
Y
fix pe  
Yancey1989 已提交
138

T
typhoonzero 已提交
139 140 141
  return false;
}

Y
Yancey1989 已提交
142 143 144 145 146 147 148 149 150
bool MultiDevSSAGraphBuilder::IsRPCOp(const OpDesc &op) const {
  for (auto &name : op.OutputNames()) {
    if (name == "RPCClient") {
      return true;
    }
  }
  return false;
}

Y
Yu Yang 已提交
151 152
std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
    const ProgramDesc &program) const {
C
fix ci  
chengduoZH 已提交
153 154 155 156
  std::unordered_map<std::string, proto::VarType::Type> var_types;
  for (auto *var : program.Block(0).AllVars()) {
    var_types[var->Name()] = var->GetType();
  }
C
chengduoZH 已提交
157

Y
Yu Yang 已提交
158
  auto graph = new SSAGraph();
Y
Yu Yang 已提交
159
  SSAGraph &result = *graph;
C
chengduoZH 已提交
160
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
161 162 163 164 165

  // We cannot invoke resize. It is a bug of GCC 4.8
  result.vars_ = std::vector<
      std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>(
      places_.size());
Y
Yu Yang 已提交
166

Y
fix pe  
Yancey1989 已提交
167 168 169 170
  // find send/recv vars so that we can place the distributed training
  // realted op in the place 0
  auto send_vars = FindDistTrainSendVars(program);
  auto recv_vars = FindDistTrainRecvVars(program);
T
typhoonzero 已提交
171

C
chengduoZH 已提交
172 173 174 175 176 177
  size_t cur_device_id = 0;
  std::vector<std::unordered_set<std::string>> var_name_on_devices;
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  var_name_on_devices.resize(places_.size());
  bcast_var_name_set.resize(places_.size());

Y
Yu Yang 已提交
178 179
  bool is_forwarding = true;
  for (auto *op : program.Block(0).AllOps()) {
Y
Yancey1989 已提交
180 181
    if (IsRPCOp(*op)) {
      // append rpc op if program is distributed trainer main program.
Y
Yu Yang 已提交
182
      // always use the first device
Y
Yancey1989 已提交
183
      CreateRPCOp(&result, *op);
Y
fix pe  
Yancey1989 已提交
184
    } else if (IsDistTrainOp(*op, send_vars, recv_vars)) {
Y
Yancey1989 已提交
185
      CreateDistTrainOp(&result, *op);
Y
Yu Yang 已提交
186
    } else if (IsScaleLossOp(*op)) {
Y
Yu Yang 已提交
187
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
188 189
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
Y
Yu Yang 已提交
190 191
        CreateScaleLossGradOp(&result);
      }
Y
Yu Yang 已提交
192
      is_forwarding = false;
Y
Yu Yang 已提交
193
    } else {
C
chengduoZH 已提交
194 195 196 197 198 199 200 201 202
      int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
      if (op_dev_id == -1) {  // var on all device
        CreateComputationalOps(&result, *op, places_.size());
      } else {
        CreateComputationalOp(&result, *op, op_dev_id);
        for (auto &var_name : op->OutputArgumentNames()) {
          var_name_on_devices[op_dev_id].emplace(var_name);
        }
      }
C
chengduoZH 已提交
203
      if (!is_forwarding && places_.size() > 1) {
Y
Yu Yang 已提交
204
        // Currently, we assume that once gradient is generated, it can be
Y
Yu Yang 已提交
205
        // broadcast, and each gradient is only broadcast once.
Y
Yu Yang 已提交
206 207
        for (auto &og : op->OutputArgumentNames()) {
          if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
Y
yuyang18 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            switch (strategy_.reduce_) {
              case BuildStrategy::ReduceStrategy::kReduce:
                CreateReduceOp(&result, og, cur_device_id);
                var_name_on_devices[cur_device_id].emplace(og);
                bcast_var_name_set[cur_device_id].emplace(
                    og.substr(0, og.size() - strlen(kGradVarSuffix)));
                cur_device_id = (cur_device_id + 1) % places_.size();
                break;
              case BuildStrategy::ReduceStrategy::kAllReduce:
                if (IsSparseGradient(var_types, og)) {
                  CreateReduceOp(&result, og, 0);
                  CreateBroadcastOp(&result, og, 0);
                } else {
                  InsertNCCLAllReduceOp(&result, og);
                }
                break;
C
chengduoZH 已提交
224
            }
Y
Yu Yang 已提交
225 226 227 228 229 230
          }
        }
      }
    }
  }

C
chengduoZH 已提交
231 232 233 234 235 236 237
  // Insert BCast Ops
  for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
    auto &to_bcast_set = bcast_var_name_set[dev_id];
    for (auto &bcast_name : to_bcast_set) {
      CreateBroadcastOp(&result, bcast_name, dev_id);
    }
  }
Y
Yu Yang 已提交
238 239 240 241 242
  /*
    Dependency graph has been constructed. However, there are still data
    harzaeds need to be handled.
   */
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
243

Y
Yu Yang 已提交
244 245 246 247 248
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);

Y
Yu Yang 已提交
249
  if (VLOG_IS_ON(10)) {
Y
Yancey1989 已提交
250 251
    std::ofstream fout("/tmp/graph.dot");
    PrintGraphviz(*graph, fout);
Y
Yu Yang 已提交
252 253
  }

Y
Yu Yang 已提交
254
  return std::unique_ptr<SSAGraph>(graph);
Y
Yu Yang 已提交
255 256
}

C
fix ci  
chengduoZH 已提交
257 258 259 260 261 262 263 264
bool MultiDevSSAGraphBuilder::IsSparseGradient(
    const std::unordered_map<std::string, proto::VarType::Type> &var_types,
    const std::string &og) const {
  PADDLE_ENFORCE(var_types.count(og) != 0);
  if (var_types.at(og) == proto::VarType::SELECTED_ROWS) {
    return true;
  }
  return false;
265 266
}

C
chengduoZH 已提交
267 268
void MultiDevSSAGraphBuilder::CreateBroadcastOp(SSAGraph *result,
                                                const std::string &p_name,
C
chengduoZH 已提交
269
                                                size_t src_dev_id) const {
C
chengduoZH 已提交
270 271 272 273 274 275 276
#ifdef PADDLE_WITH_CUDA
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new BroadcastOpHandle(local_scopes_, places_);
#endif

  result->ops_.emplace_back(op_handle);
C
chengduoZH 已提交
277
  auto *in = result->vars_.at(src_dev_id).at(p_name).back().get();
C
chengduoZH 已提交
278 279 280
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
C
chengduoZH 已提交
281
    auto &vars = result->vars_.at(i).at(p_name);
C
chengduoZH 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    auto &p = places_[i];
    auto *out_var = new VarHandle(vars.size(), i, p_name, p);
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
#ifndef ADDLE_WITH_CUDA
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOp(SSAGraph *result,
                                                    const OpDesc &op,
                                                    int dev_id) const {
  result->ops_.emplace_back(
      new ComputationOpHandle(op, local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, op, dev_id);
}

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
    SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_));
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    auto &vars = result->vars_[i][og];
Y
Yu Yang 已提交
311 312
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
Y
Yu Yang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    op_handle->AddInput(prev_grad.get());

    auto var = new VarHandle(vars.size() - 1, i, og, p);
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
#else
  PADDLE_ENFORCE("Not implemented");
#endif
}

bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
    const std::string &og,
    std::unordered_set<std::string> *og_has_been_broadcast) const {
  bool is_pg_once =
      grad_names_.count(og) != 0 && og_has_been_broadcast->count(og) == 0;
  if (is_pg_once) {
    // Insert NCCL AllReduce Op
    og_has_been_broadcast->insert(og);
  }
  return is_pg_once;
}

C
chengduoZH 已提交
336 337 338
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
    const OpDesc &op) const {
Y
yuyang18 已提交
339
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    return -1;
  }

  int var_dev_id = -1;
  for (auto &var_name : op.InputArgumentNames()) {
    if (var_dev_id != -1) break;
    for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
      if (var_name_on_devices[i].count(var_name)) {
        var_dev_id = static_cast<int>(i);
        break;
      }
    }
  }
  return var_dev_id;
}

Y
Yu Yang 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
  for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
    auto *communication_dev_ctx = nccl_ctxs_->DevCtx(places_[i]);
#else
    auto *communication_dev_ctx =
        platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
#endif

    auto *op_handle =
        new ScaleLossGradOpHandle(local_scopes_.size(), local_scopes_[i],
                                  places_[i], communication_dev_ctx);
    result->ops_.emplace_back(op_handle);

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

    CreateOpOutput(result, op_handle, GradVarName(loss_var_name_), places_[i],
                   i);
  }
}

void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
T
typhoonzero 已提交
383 384 385
                                                     const OpDesc &op,
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
386 387 388
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
    result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
Y
Yu Yang 已提交
389
    CreateOpHandleIOs(result, op, scope_idx);
Y
Yu Yang 已提交
390 391 392
  }
}

C
chengduoZH 已提交
393 394 395
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(SSAGraph *result,
                                                   const std::string &og,
                                                   int dst_dev_id) const {
C
chengduoZH 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
#ifdef PADDLE_WITH_CUDA
  result->ops_.emplace_back(
      new ReduceOpHandle(local_scopes_, places_, nccl_ctxs_));
#else
  result->ops_.emplace_back(new ReduceOpHandle(local_scopes_, places_));
#endif
  auto *op_handle = result->ops_.back().get();

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &vars = result->vars_[i][og];
#ifndef PADDLE_WITH_CUDA
    auto &p = places_[i];
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
#endif
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
    op_handle->AddInput(prev_grad.get());
  }
  auto &vars = result->vars_[dst_dev_id][og];
  auto var =
      new VarHandle(vars.size() - 1, dst_dev_id, og, places_[dst_dev_id]);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

Y
fix pe  
Yancey1989 已提交
423 424
void MultiDevSSAGraphBuilder::ConnectOp(SSAGraph *result, OpHandleBase *op,
                                        const std::string &prev_op_name) const {
Y
Yancey1989 已提交
425
  for (auto &prev_op : result->ops_) {
Y
fix pe  
Yancey1989 已提交
426
    if (prev_op->Name() == prev_op_name) {
Y
Yancey1989 已提交
427 428 429
      auto *dep_var = new DummyVarHandle();
      prev_op->AddOutput(dep_var);
      result->dep_vars_.emplace(dep_var);
Y
fix pe  
Yancey1989 已提交
430
      op->AddInput(dep_var);
Y
Yancey1989 已提交
431 432 433 434
    }
  }
}

Y
Yancey1989 已提交
435 436 437 438 439 440 441 442
void MultiDevSSAGraphBuilder::CreateDistTrainOp(SSAGraph *result,
                                                const OpDesc &op) const {
  CreateComputationalOp(result, op, 0);
  if (op.Type() == "concat") {
    ConnectOp(result, result->ops_.back().get(), "fetch_barrier");
  }
}

Y
Yancey1989 已提交
443 444
void MultiDevSSAGraphBuilder::CreateRPCOp(SSAGraph *result,
                                          const OpDesc &op) const {
Y
Yu Yang 已提交
445 446
  auto &p = places_[0];
  auto *s = local_scopes_[0];
Y
Yancey1989 已提交
447
  result->ops_.emplace_back(new RPCOpHandle(op, s, p, op.Type()));
Y
fix pe  
Yancey1989 已提交
448

Y
Yancey1989 已提交
449
  if (op.Type() == "send_barrier") {
Y
fix pe  
Yancey1989 已提交
450
    ConnectOp(result, result->ops_.back().get(), "send_vars");
Y
Yancey1989 已提交
451
  } else if (op.Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
452
    ConnectOp(result, result->ops_.back().get(), "send_barrier");
Y
Yancey1989 已提交
453
  } else if (op.Type() == "fetch_barrier") {
Y
fix pe  
Yancey1989 已提交
454
    ConnectOp(result, result->ops_.back().get(), "recv");
Y
Yancey1989 已提交
455 456 457 458 459 460 461 462
  } else if (op.Type() == "send" || op.Type() == "send_vars") {
    // do nothing
  } else {
    PADDLE_THROW(
        "rpc op should be in [send,"
        "send_vars, send_barrier. recv, fetch_barrier]");
  }

Y
Yu Yang 已提交
463 464 465
  // FIXME(wuyi): send op always copy from GPU 0
  // Create inputs for output on original place and no ssa output
  // is created for send op.
Y
Yu Yang 已提交
466
  CreateOpHandleIOs(result, op, 0);
Y
Yu Yang 已提交
467 468 469 470 471 472 473
}

bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
  // FIXME(yy): Do not hard code like this
  return op.OutputArgumentNames().size() == 1 &&
         op.OutputArgumentNames()[0] == GradVarName(loss_var_name_);
}
C
chengduoZH 已提交
474

Y
Yu Yang 已提交
475 476 477
}  // namespace details
}  // namespace framework
}  // namespace paddle