nccl_op_test.cu 11.6 KB
Newer Older
D
Dong Zhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
Dong Zhihong 已提交
15 16
#define EIGEN_USE_GPU

D
Dong Zhihong 已提交
17 18
#include <glog/logging.h>
#include <gtest/gtest.h>
D
Dong Zhihong 已提交
19
#include <algorithm>
D
Dong Zhihong 已提交
20
#include <memory>
D
Dong Zhihong 已提交
21 22 23
#include <mutex>
#include <thread>
#include <utility>
D
Dong Zhihong 已提交
24
#include <vector>
D
Dong Zhihong 已提交
25

D
Dong Zhihong 已提交
26 27
#include "paddle/framework/block_desc.h"
#include "paddle/framework/op_desc.h"
D
Dong Zhihong 已提交
28
#include "paddle/framework/op_registry.h"
D
Dong Zhihong 已提交
29 30
#include "paddle/framework/program_desc.h"
#include "paddle/framework/var_desc.h"
D
Dong Zhihong 已提交
31
#include "paddle/operators/math/math_function.h"
D
Dong Zhihong 已提交
32
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
33 34 35
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
36
#include "paddle/platform/place.h"
D
Dong Zhihong 已提交
37

D
Dong Zhihong 已提交
38
USE_NO_KERNEL_OP(ncclInit);
D
Dong Zhihong 已提交
39 40
USE_GPU_ONLY_OP(ncclAllReduce);
USE_GPU_ONLY_OP(ncclReduce);
D
Dong Zhihong 已提交
41
USE_GPU_ONLY_OP(ncclBcast);
D
Dong Zhihong 已提交
42

D
Dong Zhihong 已提交
43 44 45
namespace f = paddle::framework;
namespace p = paddle::platform;

D
Dong Zhihong 已提交
46
static std::vector<int> gpu_list;
D
Dong Zhihong 已提交
47 48 49

// test data amount
const f::DDim kDims = {100, 100};
D
Dong Zhihong 已提交
50

D
Dong Zhihong 已提交
51 52 53 54 55 56 57 58 59 60 61 62
// nccl op common tester, init communicator.
class NCCLTester : public ::testing::Test {
 public:
  virtual void SetUp() override {
    cpu_ctx = new p::CPUDeviceContext(p::CPUPlace());
    for (size_t i = 0; i < gpu_list.size(); ++i) {
      p::GPUPlace place(i);
      dev_ctxs.emplace_back(new p::CUDADeviceContext(place));
    }

    NCCLInitOp();
  }
D
Dong Zhihong 已提交
63

D
Dong Zhihong 已提交
64 65 66 67 68
  virtual void TearDown() override {
    for (auto &device_context : dev_ctxs) {
      delete device_context;
    }
  }
D
Dong Zhihong 已提交
69

D
Dong Zhihong 已提交
70 71
  void NCCLInitOp() {
    std::unique_ptr<f::OpDescBind> op1(new f::OpDescBind);
D
Dong Zhihong 已提交
72

D
Dong Zhihong 已提交
73 74 75
    op1->SetType("ncclInit");
    op1->SetOutput("Communicator", {"comm"});
    op1->SetAttr("gpus", {gpu_list});
D
Dong Zhihong 已提交
76

D
Dong Zhihong 已提交
77 78
    auto *var = g_scope.Var("comm");
    var->GetMutable<p::Communicator>();
79

D
Dong Zhihong 已提交
80 81 82 83 84 85 86 87 88 89
    auto op = f::OpRegistry::CreateOp(*op1);
    VLOG(1) << "invoke NCCLInitOp.";
    op->Run(g_scope, *cpu_ctx);
    VLOG(1) << "NCCLInitOp finished.";
  }

  template <class T>
  void PerThreadProgram(int gpu_id, const f::OpDescBind &op_desc,
                        f::Scope *scope) {
    std::unique_lock<std::mutex> lk(mu);
D
Dong Zhihong 已提交
90
    const f::OpDescBind *op1 = &op_desc;
D
Dong Zhihong 已提交
91 92 93 94 95 96 97

    p::GPUPlace place(gpu_id);
    auto &ctx = dev_ctxs.at(gpu_id);

    auto *send_tensor = scope->Var("st")->GetMutable<f::LoDTensor>();
    auto *recv_tensor = scope->Var("rt")->GetMutable<f::LoDTensor>();

D
Dong Zhihong 已提交
98 99 100 101 102 103 104 105 106 107
    if (!send_tensor->numel()) {
      send_tensor->Resize(kDims);
      send_tensor->mutable_data<T>(kDims, place);

      std::vector<T> send_vector(f::product(kDims), gpu_id);
      send_tensor->CopyFromVector<T>(send_vector, *ctx);
      ctx->Wait();
      VLOG(1) << "Send Tensor filled with elements " << send_tensor->numel();
    }

D
Dong Zhihong 已提交
108
    lk.unlock();
D
Dong Zhihong 已提交
109

D
Dong Zhihong 已提交
110 111 112 113
    PADDLE_ENFORCE(send_tensor->numel() == f::product(kDims),
                   "Tensor numel not match!");

    auto op = f::OpRegistry::CreateOp(*op1);
D
Dong Zhihong 已提交
114

D
Dong Zhihong 已提交
115
    VLOG(1) << "Device : " << gpu_id << " invoke " << op_desc.Type();
D
Dong Zhihong 已提交
116 117
    VLOG(1) << " send_tensor : " << send_tensor->numel()
            << " recv_tensor : " << recv_tensor->numel();
D
Dong Zhihong 已提交
118 119 120
    op->Run(*scope, *ctx);
    VLOG(1) << "Device : " << gpu_id << " finished " << op_desc.Type();
  }
121

D
Dong Zhihong 已提交
122 123 124 125 126 127 128
 public:
  std::vector<p::DeviceContext *> dev_ctxs;
  p::DeviceContext *cpu_ctx;
  f::Scope g_scope;
  std::mutex mu;
};

D
Dong Zhihong 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
// // ncclInitOp with desc
// TEST(NCCL, ncclInitOp) {
//   std::unique_ptr<f::OpDescBind> op_desc(new f::OpDescBind);

//   op_desc->SetType("ncclInit");
//   op_desc->SetOutput("Communicator", {"x1"});
//   op_desc->SetAttr("gpus", {gpu_list});

//   f::Scope g_scope;
//   std::unique_ptr<p::DeviceContext> ctx(new
//   p::CPUDeviceContext(p::CPUPlace()));

//   auto *var = g_scope.Var("x1");
//   var->GetMutable<p::Communicator>();

//   auto op = f::OpRegistry::CreateOp(*op_desc);
//   VLOG(1) << "invoke NCCLInitOp.";
//   op->Run(g_scope, *ctx.get());
//   VLOG(1) << "NCCLInitOp finished.";
// }

// // ncclAllReduceOp with desc
// TEST_F(NCCLTester, ncclAllReduceOp) {
//   std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
//   op2->SetType("ncclAllReduce");
//   op2->SetInput("X", {"st"});
//   op2->SetInput("Communicator", {"comm"});
//   op2->SetOutput("Out", {"rt"});

//   std::vector<f::Scope *> dev_scopes;

//   std::vector<std::thread> ths;

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     dev_scopes.emplace_back(&g_scope.NewScope());
//     std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
//                    *op2.get(), dev_scopes[i]);
//     ths.emplace_back(std::move(th));
//   }

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     ths[i].join();
//   }

//   // check results
//   float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);

//   for (size_t i = 0; i < dev_scopes.size(); ++i) {
//     p::CPUPlace cpu_place;
//     p::GPUPlace gpu_place(gpu_list[i]);

//     auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get<f::LoDTensor>();
//     auto *rt = recv_tensor.data<float>();
//     auto *result_tensor =
//     dev_scopes[i]->Var("ct")->GetMutable<f::LoDTensor>();
//     result_tensor->Resize(kDims);
//     auto *ct = result_tensor->mutable_data<float>(cpu_place);

//     paddle::memory::Copy(
//         cpu_place, ct, p::GPUPlace(gpu_list[i]), rt,
//         recv_tensor.numel() * sizeof(float),
//         static_cast<p::CUDADeviceContext *>(dev_ctxs[i])->stream());

//     for (size_t j = 0; j < f::product(kDims); ++j) {
//       ASSERT_NEAR(ct[j], result, 1e-5);
//     }
//   }
// }

// // ncclAReduceOp with desc
// TEST_F(NCCLTester, ncclReduceOp) {
//   std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
//   const int kRoot = 0;
//   op2->SetType("ncclReduce");
//   op2->SetInput("X", {"st"});
//   op2->SetInput("Communicator", {"comm"});
//   op2->SetOutput("Out", {"rt"});
//   op2->SetAttr("root", {kRoot});

//   std::vector<f::Scope *> dev_scopes;

//   std::vector<std::thread> ths;

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     dev_scopes.emplace_back(&g_scope.NewScope());
//     std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
//                    *op2.get(), dev_scopes[i]);
//     ths.emplace_back(std::move(th));
//   }

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     ths[i].join();
//   }

//   // check results on
//   float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);

//   p::CPUPlace cpu_place;
//   p::GPUPlace gpu_place(gpu_list[kRoot]);

//   auto &recv_tensor = dev_scopes[kRoot]->FindVar("rt")->Get<f::LoDTensor>();
//   auto *rt = recv_tensor.data<float>();
//   auto *result_tensor =
//       dev_scopes[kRoot]->Var("ct")->GetMutable<f::LoDTensor>();
//   result_tensor->Resize(kDims);
//   auto *ct = result_tensor->mutable_data<float>(cpu_place);

//   paddle::memory::Copy(
//       cpu_place, ct, p::GPUPlace(gpu_list[kRoot]), rt,
//       recv_tensor.numel() * sizeof(float),
//       static_cast<p::CUDADeviceContext *>(dev_ctxs[kRoot])->stream());

//   for (int j = 0; j < f::product(kDims); ++j) {
//     ASSERT_NEAR(ct[j], result, 1e-5);
//   }
// }

// // // ncclBcastOp with desc
// TEST_F(NCCLTester, ncclBcastOp) {
//   std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
//   const int kRoot = 5;
//   op2->SetType("ncclBcast");
//   op2->SetInput("X", {"st"});
//   op2->SetInput("Communicator", {"comm"});
//   op2->SetOutput("Out", {"rt"});
//   op2->SetAttr("root", {kRoot});

//   std::vector<f::Scope *> dev_scopes;

//   std::vector<std::thread> ths;

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     dev_scopes.emplace_back(&g_scope.NewScope());
//     std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
//                    *op2.get(), dev_scopes[i]);
//     ths.emplace_back(std::move(th));
//   }

//   for (size_t i = 0; i < gpu_list.size(); ++i) {
//     ths[i].join();
//   }

//   const int idx = 1;
//   // check results on
//   float result = kRoot;

//   p::CPUPlace cpu_place;
//   p::GPUPlace gpu_place(gpu_list[idx]);

//   auto &recv_tensor = dev_scopes[idx]->FindVar("rt")->Get<f::LoDTensor>();
//   auto *rt = recv_tensor.data<float>();
//   auto *result_tensor =
//   dev_scopes[idx]->Var("ct")->GetMutable<f::LoDTensor>();
//   result_tensor->Resize(kDims);
//   auto *ct = result_tensor->mutable_data<float>(cpu_place);

//   paddle::memory::Copy(
//       cpu_place, ct, p::GPUPlace(gpu_list[idx]), rt,
//       recv_tensor.numel() * sizeof(float),
//       static_cast<p::CUDADeviceContext *>(dev_ctxs[idx])->stream());

//   for (size_t j = 0; j < f::product(kDims); ++j) {
//     ASSERT_NEAR(ct[j], result, 1e-5);
//   }
// }
D
Dong Zhihong 已提交
294

D
Dong Zhihong 已提交
295 296 297
// joint ncclBcastOp and ncclReduceOp
TEST_F(NCCLTester, MultipleOp) {
  const int kRoot = 0;
D
Dong Zhihong 已提交
298
  std::unique_ptr<f::OpDescBind> op1(new f::OpDescBind);
D
Dong Zhihong 已提交
299
  op1->SetType("ncclReduce");
D
Dong Zhihong 已提交
300
  op1->SetInput("X", {"st"});
D
Dong Zhihong 已提交
301
  op1->SetInput("Communicator", {"comm"});
D
Dong Zhihong 已提交
302
  op1->SetOutput("Out", {"rt"});
D
Dong Zhihong 已提交
303
  op1->SetAttr("root", {kRoot});
D
Dong Zhihong 已提交
304 305

  std::unique_ptr<f::OpDescBind> op2(new f::OpDescBind);
D
Dong Zhihong 已提交
306
  op2->SetType("ncclBcast");
D
Dong Zhihong 已提交
307
  op2->SetInput("X", {"rt"});
D
Dong Zhihong 已提交
308
  op2->SetInput("Communicator", {"comm"});
D
Dong Zhihong 已提交
309
  op2->SetOutput("Out", {"out"});
D
Dong Zhihong 已提交
310 311 312
  op2->SetAttr("root", {kRoot});

  std::vector<f::Scope *> dev_scopes;
D
Dong Zhihong 已提交
313 314 315
  // for (size_t i = 0; i < dev_scopes.size(); ++i) {
  //   dev_scopes[i]->Var("out")->GetMutable<f::LoDTensor>();
  // }
D
Dong Zhihong 已提交
316 317

  std::vector<std::thread> ths;
D
Dong Zhihong 已提交
318

D
Dong Zhihong 已提交
319
  // run Reduce
D
Dong Zhihong 已提交
320 321
  for (size_t i = 0; i < gpu_list.size(); ++i) {
    dev_scopes.emplace_back(&g_scope.NewScope());
D
Dong Zhihong 已提交
322
    std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
D
Dong Zhihong 已提交
323
                   *op1.get(), dev_scopes[i]);
D
Dong Zhihong 已提交
324 325 326 327 328 329 330
    ths.emplace_back(std::move(th));
  }

  for (size_t i = 0; i < gpu_list.size(); ++i) {
    ths[i].join();
  }

D
Dong Zhihong 已提交
331
  ths.clear();
D
Dong Zhihong 已提交
332

D
Dong Zhihong 已提交
333
  // run Bcast
D
Dong Zhihong 已提交
334
  for (size_t i = 0; i < gpu_list.size(); ++i) {
D
Dong Zhihong 已提交
335
    dev_scopes[i]->Var("out")->GetMutable<f::LoDTensor>();
D
Dong Zhihong 已提交
336 337 338 339
    std::thread th(&NCCLTester::PerThreadProgram<float>, this, gpu_list[i],
                   *op2.get(), dev_scopes[i]);
    ths.emplace_back(std::move(th));
  }
D
Dong Zhihong 已提交
340

D
Dong Zhihong 已提交
341 342 343
  for (size_t i = 0; i < gpu_list.size(); ++i) {
    ths[i].join();
  }
D
Dong Zhihong 已提交
344

D
Dong Zhihong 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
  // check results
  float result = std::accumulate(gpu_list.begin(), gpu_list.end(), 0);

  for (size_t i = 0; i < dev_scopes.size(); ++i) {
    p::CPUPlace cpu_place;
    p::GPUPlace gpu_place(gpu_list[i]);

    auto &recv_tensor = dev_scopes[i]->FindVar("rt")->Get<f::LoDTensor>();
    auto *rt = recv_tensor.data<float>();
    auto *result_tensor = dev_scopes[i]->Var("ct")->GetMutable<f::LoDTensor>();
    result_tensor->Resize(kDims);
    auto *ct = result_tensor->mutable_data<float>(cpu_place);

    paddle::memory::Copy(
        cpu_place, ct, p::GPUPlace(gpu_list[i]), rt,
        recv_tensor.numel() * sizeof(float),
        static_cast<p::CUDADeviceContext *>(dev_ctxs[i])->stream());

    for (int j = 0; j < f::product(kDims); ++j) {
      ASSERT_NEAR(ct[j], result, 1e-5);
    }
  }
}
D
Dong Zhihong 已提交
368

D
Dong Zhihong 已提交
369
int main(int argc, char **argv) {
D
Dong Zhihong 已提交
370
  const int dev_count = p::GetCUDADeviceCount();
D
Dong Zhihong 已提交
371 372 373 374 375 376
  if (dev_count <= 1) {
    LOG(WARNING)
        << "Cannot test multi-gpu nccl, because the CUDA device count is "
        << dev_count;
    return 0;
  }
D
Dong Zhihong 已提交
377 378 379 380

  for (int i = 0; i < dev_count; ++i) {
    gpu_list.emplace_back(i);
  }
D
Dong Zhihong 已提交
381
  testing::InitGoogleTest(&argc, argv);
D
Dong Zhihong 已提交
382 383 384

  // device context should be release before scope.
  // otherwise driver will down.
D
Dong Zhihong 已提交
385 386
  return RUN_ALL_TESTS();
}